α-pinene photooxidation under controlled chemical conditions – Part 1: Gas-phase composition in low- and high-NO<sub>x</sub> environments
-
Published:2012-07-25
Issue:14
Volume:12
Page:6489-6504
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Eddingsaas N. C.,Loza C. L.,Yee L. D.,Seinfeld J. H.,Wennberg P. O.
Abstract
Abstract. The OH oxidation of α-pinene under both low- and high-NOx environments was studied in the Caltech atmospheric chambers. Ozone was kept low to ensure OH was the oxidant. The initial α-pinene concentration was 20–50 ppb to ensure that the dominant peroxy radical pathway under low-NOx conditions is reaction with HO2, produced from reaction of OH with H2O2, and under high-NOx conditions, reactions with NO. Here we present the gas-phase results observed. Under low-NOx conditions the main first generation oxidation products are a number of α-pinene hydroxy hydroperoxides and pinonaldehyde, accounting for over 40% of the yield. In all, 65–75% of the carbon can be accounted for in the gas phase; this excludes first-generation products that enter the particle phase. We suggest that pinonaldehyde forms from RO2 + HO2 through an alkoxy radical channel that regenerates OH, a mechanism typically associated with acyl peroxy radicals, not alkyl peroxy radicals. The OH oxidation and photolysis of α-pinene hydroxy hydroperoxides leads to further production of pinonaldehyde, resulting in total pinonaldehyde yield from low-NOx OH oxidation of ~33%. The low-NOx OH oxidation of pinonaldehyde produces a number of carboxylic acids and peroxyacids known to be important secondary organic aerosol components. Under high-NOx conditions, pinonaldehyde was also found to be the major first-generation OH oxidation product. The high-NOx OH oxidation of pinonaldehyde did not produce carboxylic acids and peroxyacids. A number of organonitrates and peroxyacyl nitrates are observed and identified from α-pinene and pinonaldehyde.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference66 articles.
1. Alvarado, A., Tuazon, E. C., Aschmann, S. M., Atkinson, R., and Arey, J.: Products of the gas-phase reactions of O(^3P) atoms and O3 with alpha -pinene and 1,2-dimethyl-1-cyclohexene, J. Geophys. Res.-Atmos., 103, 25541–25551, https://doi.org/10.1029/98JD00524, 1998. 2. Arey, J., Atkinson, R., and Aschmann, S. M.: Produt study of the gas-phase reactions of monoterpenes with the OH radical in the presence of NOx, J. Geophys. Res., 95, 18539–18546, https://doi.org/10.1029/JD095iD11p18539, 1990. 3. Aschmann, S. M., Atkinson, R., and Arey, J.: Products of reaction of OH radicals with alpha-pinene, J. Geophys. Res.-Atmos., 107, D14, https://doi.org/10.1029/2001JD001098, 2002. 4. Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chem. Rev., 86, 69–201, 1986. 5. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Cited by
80 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|