Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou province, China

Author:

Dai Z. H.,Feng X. B.,Sommar J.,Li P.,Fu X. W.

Abstract

Abstract. The legacy of long-term mining activities in Wanshan mercury (Hg) mining area (WMMA), Guizhou, China including a series of environmental issues related to Hg pollution. The spatial distribution of gaseous elemental mercury (Hg0) concentrations in ambient air were monitored using a mobile RA-915+ Zeeman Mercury Analyzer during daytime and night time in May 2010. The data imply that calcines and mine wastes piles located at Dashuixi and on-going artisanal Hg mining activities at Supeng were major sources of atmospheric mercury in WMMA. For a full year (May 2010 to May 2011), sampling of precipitation and throughfall were conducted on a weekly basis at three sites (Shenchong, Dashuixi, and Supeng) within WMMA. Hg in deposition was characterized by analysis of total Hg (THg) and dissolved Hg (DHg) concentrations. The corresponding data exhibit a high degree of variability, both temporarily and spatially. The volume-weighted mean THg concentrations in precipitation and throughfall samples were 502.6 ng l−1 and 977.8 ng l−1 at Shenchong, 814.1 ng l−1and 3392.1 ng l−1 at Dashuixi, 7490.1 ng l−1and 9641.5 ng l−1 at Supeng, respectively. THg was enhanced in throughfall compared to wet deposition samples by up to a factor of 7. The annual wet Hg deposition fluxes were 29.1, 68.8 and 593.1 μg m−2 yr−1 at Shenchong, Dashuixi and Supeng, respectively, while the annual dry Hg deposition fluxes were estimated to be 378.9, 2613.6 and 6178 μg m−2 yr−1 at these sites, respectively. Dry deposition played a dominant role in total atmospheric Hg deposition in WMMA since the dry deposition fluxes were 10.4–37.9 times higher than the wet deposition fluxes during the whole sample period. Our data showed that air deposition was still an important pathway of Hg contamination to the local environment in WMMA.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3