Heat loss from the Atlantic water layer in the St. Anna Trough (northern Kara Sea): causes and consequences

Author:

Dmitrenko I. A.ORCID,Kirillov S. A.,Serra N.,Koldunov N. V.ORCID,Ivanov V. V.ORCID,Schauer U.,Polyakov I. V.,Barber D.,Janout M.ORCID,Lien V. S.ORCID,Makhotin M.,Aksenov Y.

Abstract

Abstract. A distinct, subsurface density front along the eastern St. Anna Trough in the northern Kara Sea is inferred from hydrographic observations in 1996 and 2008–2010. Direct velocity measurements show a persistent northward subsurface current (~ 20 cm s−1) along the St. Anna Trough eastern flank. This sheared flow, carrying the outflow from the Barents and Kara Seas to the Arctic Ocean, is also evident from shipboard observations as well as from geostrophic velocities and numerical model simulations. Although no clear evidence for the occurrence of shear instabilities could be obtained, we speculate that the enhanced vertical mixing along the St. Anna Trough eastern flank promoted by a vertical velocity shear favors the upward heat loss from the intermediate warm Atlantic water layer. The associated upward heat flux is inferred to 50–100 W m−2 using hydrographic data and model simulations. The zone of lowered sea ice thickness and concentration essentially marks the Atlantic water pathway in the St. Anna Trough and adjacent Nansen Basin continental margin from both sea-ice remote sensing observations and model simulations. In fact, the seaice shows a consistently delayed freeze-up onset during fall and a reduction in the seaice thickness during winter. This is consistent with our results on the enhanced Atlantic water heat loss along the Atlantic water pathway in the St. Anna Trough.1 1Dedicated to the memory of our colleague Klaus Hochheim who tragically lost his life in the Arctic expedition in September 2013

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3