Seismo-ionospheric coupling correlation analysis of earthquakes in Greece, using empirical mode decomposition

Author:

Tsolis G. S.,Xenos T. D.

Abstract

Abstract. Ionospheric variability as a result of earthquake events is a confirmed phenomenon as published in various seismo-ionospheric coupling studies. Generally, ionospheric variations resulting from earthquake activity are much weaker than disturbances generated by different sources, e.g. geomagnetic storms. However, geomagnetic storm disturbances exhibit more global behaviour, whereas seismo-ionospheric variations occur only locally in an area that is specified by the magnitude of the earthquake. Cross-correlation coefficient analysis is a technique proposed some years ago, and ensures cancelation of geomagnetic storm variations of the ionospheric plasma, provided that the measurements are taken from stations with similar behaviour in these phenomena. In this paper we will use the aforementioned technique for analyzing data from ionospheric stations in Rome and Athens, and apply it to a series of earthquakes in Greece. Considering the local behaviour of the seismo-ionospheric variations, we expect that the Athens station, which happens to be inside the area affected by the earthquake, will accurately capture the disturbances. Due to its distance from the activity, we also do not expect the Rome station measurements to be affected by the seismic events in Greece. In addition, due to the fact that ionospheric plasma parameters exhibit non-stationary and nonlinear behaviour, we propose a novel signal processing technique known as the Hilbert-Huang transform in order to denoise the data before we calculate the cross-correlation coefficient of the two signals. Results from our analysis are in accordance with previously-conducted studies covering the same topic, clearly demonstrating that there are ionospheric precursors 1 to 7 days prior to strong seismic events as well as 1 to 2 days following such events.

Publisher

Copernicus GmbH

Subject

General Medicine

Reference12 articles.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3