Author:
Järvinen H.,Räisänen P.,Laine M.,Tamminen J.,Ilin A.,Oja E.,Solonen A.,Haario H.
Abstract
Abstract. Climate models contain closure parameters to which the model climate is sensitive. These parameters appear in physical parameterization schemes where some unresolved variables are expressed by predefined parameters rather than being explicitly modeled. Currently, best expert knowledge is used to define the optimal closure parameter values, based on observations, process studies, large eddy simulations, etc. Here, parameter estimation, based on the adaptive Markov chain Monte Carlo (MCMC) method, is applied for estimation of joint posterior probability density of a small number (n=4) of closure parameters appearing in the ECHAM5 climate model. The parameters considered are related to clouds and precipitation and they are sampled by an adaptive random walk process of the MCMC. The parameter probability densities are estimated simultaneously for all parameters, subject to an objective function. Five alternative formulations of the objective function are tested, all related to the net radiative flux at the top of the atmosphere. Conclusions of the closure parameter estimation tests with a low-resolution ECHAM5 climate model indicate that (i) adaptive MCMC is a viable option for parameter estimation in large-scale computational models, and (ii) choice of the objective function is crucial for the identifiability of the parameter distributions.
Reference25 articles.
1. AMIP Project Office: AMIP {II} guidelines, AMIP Newsletter, 8, http://www-pcmdi.llnl.gov/projects/amip/NEWS/amipnl8.php, 1996.
2. Andrieu, C. and Moulines, E.: On the ergodicity properties of some adaptive MCMC algorithms, Ann. Appl. Prob., 16, 1462–1505, https://doi.org/10.1214/105051606000000286, 2006
3. Annan, J. D. and Hargreaves, J. C.: Efficient estimation and ensemble generation in climate modeling, Phil. Trans. R. Soc. A, 365, 2077–2088, https://doi.org/10.1098/rsta.2007.2067, 2007.
4. Dee, D. P.: Bias and data assimilation, Q. J. R. Meteorol. Soc., 131, 3323–3343, https://doi.org/10.1256/qj.05.137, 2005.
5. Haario, H., Saksman, E., and Tamminen, J.: An adaptive {M}etropolis algorithm, Bernoulli, 7, 223–242, 2001.
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献