Above-cloud aerosol radiative effects based on ORACLES 2016 and ORACLES 2017 aircraft experiments
-
Published:2019-12-09
Issue:12
Volume:12
Page:6505-6528
-
ISSN:1867-8548
-
Container-title:Atmospheric Measurement Techniques
-
language:en
-
Short-container-title:Atmos. Meas. Tech.
Author:
Cochrane Sabrina P., Schmidt K. SebastianORCID, Chen HongORCID, Pilewskie Peter, Kittelman Scott, Redemann JensORCID, LeBlanc SamuelORCID, Pistone KristinaORCID, Kacenelenbogen Meloë, Segal Rozenhaimer Michal, Shinozuka Yohei, Flynn Connor, Platnick Steven, Meyer KerryORCID, Ferrare Rich, Burton Sharon, Hostetler Chris, Howell Steven, Freitag SteffenORCID, Dobracki Amie, Doherty Sarah
Abstract
Abstract. Determining the direct aerosol radiative effect (DARE) of
absorbing aerosols above clouds from satellite observations alone is a
challenging task, in part because the radiative signal of the aerosol layer
is not easily untangled from that of the clouds below. In this study, we use
aircraft measurements from the NASA ObseRvations of CLouds above Aerosols
and their intEractionS (ORACLES) project in the southeastern Atlantic to derive
it with as few assumptions as possible. This is accomplished by using
spectral irradiance measurements (Solar Spectral Flux Radiometer, SSFR) and
aerosol optical depth (AOD) retrievals (Spectrometer for Sky-Scanning,
Sun-Tracking Atmospheric Research, 4STAR) during vertical profiles (spirals)
that minimize the albedo variability of the underlying cloud field – thus
isolating aerosol radiative effects from those of the cloud field below. For
two representative cases, we retrieve spectral aerosol single scattering
albedo (SSA) and the asymmetry parameter (g) from these profile
measurements and calculate DARE given the albedo range measured by SSFR on
horizontal legs above clouds. For mid-visible wavelengths, we find SSA
values from 0.80 to 0.85 and a significant spectral dependence of g. As the
cloud albedo increases, the aerosol increasingly warms the column. The
transition from a cooling to a warming top-of-aerosol radiative effect
occurs at an albedo value (critical albedo) just above 0.2 in the
mid-visible wavelength range. In a companion paper, we use the techniques introduced here to
generalize our findings to all 2016 and 2017 measurements and parameterize
aerosol radiative effects.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference66 articles.
1. Bergstrom, R. W., Pilewskie, P., Russell, P. B., Redemann, J., Bond, T. C., Quinn, P. K., and Sierau, B.: Spectral absorption properties of atmospheric aerosols, Atmos. Chem. Phys., 7, 5937–5943, https://doi.org/10.5194/acp-7-5937-2007, 2007. 2. Bergstrom, R. W., Schmidt, K. S., Coddington, O., Pilewskie, P., Guan, H., Livingston, J. M., Redemann, J., and Russell, P. B.: Aerosol spectral absorption in the Mexico City area: results from airborne measurements during MILAGRO/INTEX B, Atmos. Chem. Phys., 10, 6333–6343, https://doi.org/10.5194/acp-10-6333-2010, 2010. 3. Bucholtz, A., Bluth, R. T., Kelly, B., Taylor, S., Batson, K., Sarto, A. W.,
Tooman, T. P., and McCoy Jr., R. F.: The Stabilized Radiometer Platform
(STRAP) – An Actively Stabilized Horizontally Level Platform for Improved
Aircraft Irradiance Measurements, J. Atmos. Ocean. Tech., 25,
2161–2175, 2008. 4. Burton, S. P., Hostetler, C. A., Cook, A. L., Hair, J. W., Seaman, S. T.,
Scola, S., Harper, D. B., Smith, J. A., Fenn, M. A., Ferrare, R. A., Saide,
P. E., Chemyakin, E. V., and Müller, D.: Calibration of a high spectral
resolution lidar using a Michelson interferometer, with data examples from
ORACLES, Appl. Optics, 57, 6061–6075, https://doi.org/10.1364/AO.57.006061,
2018. 5. Coakley, J. A. and P. Chylek,: The two-stream approximation in radiative
transfer: Including the angle of the incident radiation, J. Atmos. Sci., 32,
409–418, https://doi.org/10.1175/1520-0469(1975)032<0409:TTSAIR>2.0.CO;2, 1975.
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|