Isotopic characterization of nitrogen oxides (NO<sub><i>x</i></sub>), nitrous acid (HONO), and nitrate (<i>p</i>NO<sub>3</sub><sup>−</sup>) from laboratory biomass burning during FIREX

Author:

Chai JiajueORCID,Miller David J.,Scheuer Eric,Dibb Jack,Selimovic Vanessa,Yokelson RobertORCID,Zarzana Kyle J.,Brown Steven S.,Koss Abigail R.,Warneke Carsten,Hastings Meredith

Abstract

Abstract. New techniques have recently been developed and applied to capture reactive nitrogen species, including nitrogen oxides (NOx=NO+NO2), nitrous acid (HONO), nitric acid (HNO3), and particulate nitrate (pNO3-), for accurate measurement of their isotopic composition. Here, we report – for the first time – the isotopic composition of HONO from biomass burning (BB) emissions collected during the Fire Influence on Regional to Global Environments Experiment (FIREX, later evolved into FIREX-AQ) at the Missoula Fire Science Laboratory in the fall of 2016. We used our newly developed annular denuder system (ADS), which was verified to completely capture HONO associated with BB in comparison with four other high-time-resolution concentration measurement techniques, including mist chamber–ion chromatography (MC–IC), open-path Fourier transform infrared spectroscopy (OP-FTIR), cavity-enhanced spectroscopy (CES), and proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF). In 20 “stack” fires (direct emission within ∼5 s of production by the fire) that burned various biomass materials from the western US, δ15N–NOx ranges from −4.3 ‰ to +7.0 ‰, falling near the middle of the range reported in previous work. The first measurements of δ15N–HONO and δ18O–HONO in biomass burning smoke reveal a range of −5.3 ‰ to +5.8 ‰ and +5.2 ‰ to +15.2 ‰, respectively. Both HONO and NOx are sourced from N in the biomass fuel, and δ15N–HONO and δ15N–NOx are strongly correlated (R2=0.89, p<0.001), suggesting HONO is directly formed via subsequent chain reactions of NOx emitted from biomass combustion. Only 5 of 20 pNO3- samples had a sufficient amount for isotopic analysis and showed δ15N and δ18O of pNO3- ranging from −10.6 ‰ to −7.4 ‰ and +11.5 ‰ to +14.8 ‰, respectively. Our δ15N of NOx, HONO, and pNO3- ranges can serve as important biomass burning source signatures, useful for constraining emissions of these species in environmental applications. The δ18O of HONO and NO3- obtained here verify that our method is capable of determining the oxygen isotopic composition in BB plumes. The δ18O values for both of these species reflect laboratory conditions (i.e., a lack of photochemistry) and would be expected to track with the influence of different oxidation pathways in real environments. The methods used in this study will be further applied in future field studies to quantitatively track reactive nitrogen cycling in fresh and aged western US wildfire plumes.

Funder

National Oceanic and Atmospheric Administration

Division of Atmospheric and Geospace Sciences

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference74 articles.

1. Akagi, S. K., Craven, J. S., Taylor, J. W., McMeeking, G. R., Yokelson, R. J., Burling, I. R., Urbanski, S. P., Wold, C. E., Seinfeld, J. H., Coe, H., Alvarado, M. J., and Weise, D. R.: Evolution of trace gases and particles emitted by a chaparral fire in California, Atmos. Chem. Phys., 12, 1397–1421, https://doi.org/10.5194/acp-12-1397-2012, 2012.

2. Akagi, S. K., Yokelson, R. J., Burling, I. R., Meinardi, S., Simpson, I., Blake, D. R., McMeeking, G. R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D. W. T., Johnson, T. J., and Weise, D. R.: Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes, Atmos. Chem. Phys., 13, 1141–1165, https://doi.org/10.5194/acp-13-1141-2013, 2013.

3. Alvarado, M. J. and Prinn, R. G.: Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 1. Lagrangian parcel studies, J. Geophys. Res.-Atmos., 114, D09306, https://doi.org/10.1029/2008JD011144, 2009.

4. Alvarado, M. J., Wang, C., and Prinn, R. G.: Formation of ozone and growth of aerosols in young smoke plumes from biomass burning: 2. Three-dimensional Eulerian studies, J. Geophys. Res.-Atmos., 114, D09307, https://doi.org/10.1029/2008JD011186, 2009.

5. Alvarado, M. J., Lonsdale, C. R., Yokelson, R. J., Akagi, S. K., Coe, H., Craven, J. S., Fischer, E. V., McMeeking, G. R., Seinfeld, J. H., Soni, T., Taylor, J. W., Weise, D. R., and Wold, C. E.: Investigating the links between ozone and organic aerosol chemistry in a biomass burning plume from a prescribed fire in California chaparral, Atmos. Chem. Phys., 15, 6667–6688, https://doi.org/10.5194/acp-15-6667-2015, 2015.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3