Analysis of global three-dimensional aerosol structure with spectral radiance matching

Author:

Liu Dong,Chen SijieORCID,Cheng Chonghui,Barker Howard W.,Dong Changzhe,Ke Ju,Wang Shuaibo,Zheng Zhuofan

Abstract

Abstract. A method is assessed which expands aerosol vertical profiles inferred from nadir-pointing lidars to cross-track locations next to nadir columns. This is achieved via matching of passive radiances at off-nadir locations with their counterparts that are collocated with lidar data. This spectral radiance matching (SRM) method is tested using profiles inferred from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) lidar observations and collocated Moderate Resolution Imaging Spectroradiometer (MODIS) passive imagery for the periods 10–25 April and 14–29 September 2015. CALIPSO profiles are expanded out to 100 km on both sides of the daytime ground track. Reliability of constructed profiles that are removed from the ground track by number of kilometers are tested by requiring the algorithm to reconstruct profiles using only profiles that are removed from it along track by more than the number of kilometers. When sufficient numbers of pixels and columns are available, the SRM method can correctly match ∼75 % and ∼68 % of aerosol vertical structure at distances of 30 and 100 km from the ground track, respectively. The construction algorithm is applied to the eastern coast of Asia during spring 2015. Vertical distributions of different aerosol subtypes indicate that the region was dominated by dust and polluted dust transported from the continent. It is shown that atmospheric profiles and aerosol optical depth (AOD) inferred from ground-based measurements agree with those constructed by the SRM method. For profiles, the relative errors between those measured by ground-based lidar and those constructed in the surrounding area are similar to the relative errors between the ground-based station and CALIPSO overpass at the closest distance. For AOD, the measurements from the ground-based network agree with those inferred from constructed aerosol structure better than direct observations from CALIPSO and close to those inferred from MODIS radiances.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3