Capturing features of turbulent Ekman–Stokes boundary layers with a stochastic modeling approach

Author:

Klein MartenORCID,Schmidt Heiko

Abstract

Abstract. Atmospheric boundary layers (ABLs) exhibit transient processes on various time scales that range from a few days down to seconds, with a scale separation of the large-scale forcing and the small-scale turbulent response. One of the standing challenges in modeling and simulation of ABLs is a physically based representation of complex multiscale boundary layer dynamics. In this study, an idealized time-dependent ABL, the so-called Ekman–Stokes boundary layer (ESBL), is considered as a simple model for the near-surface flow in the mid latitudes and polar regions. The ESBL is driven by a prescribed temporal modulation of the bulk–surface velocity difference. A stochastic one-dimensional turbulence (ODT) model is applied to the ESBL as standalone tool that aims to resolve all relevant scales of the flow along a representative vertical coordinate. It is demonstrated by comparison with reference data that ODT is able to capture relevant features of the time-dependent boundary layer flow. The model predicts a parametric enhancement of the bulk–surface coupling in the event of a boundary layer resonance when the flow is forced with the local Coriolis frequency. The latter reproduces leading order effects of the critical latitudes. The model results suggest that the bulk flow decouples from the surface for high forcing frequencies due to a relative increase in detached residual turbulence.

Funder

Bundesministerium für Bildung und Forschung

Brandenburgische Technische Universität Cottbus-Senftenberg

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Pollution,Geophysics,Ecological Modeling

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3