Oxidation of SO<sub>2</sub> by H<sub>2</sub>O<sub>2</sub> on ice surfaces at 228 K: a sink for SO<sub>2</sub> in ice clouds

Author:

Clegg S. M.,Abbatt J. P. D.

Abstract

Abstract. The heterogeneous reaction SO2 + H2O2   H2SO4 on ice at 228 K has been studied in a low temperature coated-wall flow tube. With H2O2 in excess of SO2, the loss of SO2 on an ice surface is time dependent with the reaction most efficient on a freshly exposed surface. The deactivation of the surface arises because the protons formed in the reaction inhibit the dissociation of adsorbed SO2. This lowers the surface concentrations of HSO3-, a participant in the rate-determining step of the oxidation mechanism. For a fixed SO2 partial pressure of 1.4 x 10-4 Pa, the reaction probabilities for SO2 loss on a freshly exposed surface scale linearly with H2O2 partial pressures between 2.7 x 10-3 and 2.7 x 10-2 Pa because the H2O2 surface coverage is unsaturated in this regime. Conversely, the reaction probabilities decrease as the partial pressure of SO2 is raised from 2.7 x 10-5 to 1.3 x 10-3 Pa, for a fixed H2O2 partial pressure of 8.7 x 10-3 Pa. This is expected if the rate determining step for the mechanism involves HSO3- rather than SO2. It may also arise to some degree if there is competition between gas phase SO2 and H2O2 for adsorption sites. The reaction is sufficiently fast that the lifetime of SO2 within ice clouds could be controlled by this heterogeneous reaction and not by the gas-phase reaction with OH.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3