Glacial–interglacial seawater isotope change near the Chilean Margin as reflected by δ2H values of C37 alkenones

Author:

Hättig KatrinORCID,Varma DevikaORCID,Schouten Stefan,van der Meer Marcel T. J.ORCID

Abstract

Abstract. Stable hydrogen isotopic compositions of long-chain alkenones with 37 carbon atoms (δ2HC37) have been shown to reflect seawater salinity in culture and environmental studies, and this potential sea surface salinity proxy has been applied to several downcore records from different regions. However, previous studies were based solely on a single sediment core and often suggested unlikely large changes in salinity based on existing proxy calibrations. Here we present a new δ2HC37 record, in combination with oxygen isotopes of benthic foraminifera from the same samples, from a sediment core from the Chilean Margin (ODP Site 1235). The observed negative shift in δ2HC37 of 20 ‰ during the last deglaciation was identical to that of a previously published δ2HC37 record from the nearby, but deeper, ODP Site 1234, suggesting a regionally consistent shift in δ2HC37. This change translates into a negative hydrogen isotope shift in the surface seawater of ca. 14 ‰, similar to glacial–interglacial reconstructions based on other δ2HC37 records. The reconstructed bottom seawater oxygen isotope change based on benthic foraminifera during the last deglaciation is approximately −0.8 ‰, in line with previous studies. When translated into hydrogen isotopes of bottom seawater using the modern open-ocean water line, this would suggest a negative change of ca. 5 ‰, smaller than the reconstructed surface seawater shift based on alkenones. The larger change in surface water isotopes suggests that it experienced more freshening during the Holocene than bottom waters, either due to increased freshwater input, reduced evaporation, or a combination of the two.

Funder

Netherlands Earth System Science Centre

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3