Fractionation of stable carbon isotopes during microbial propionate consumption in anoxic rice paddy soils

Author:

Conrad RalfORCID,Claus Peter

Abstract

Abstract. Propionate is an important intermediate during the breakdown of organic matter in anoxic flooded paddy soils. Since there are only a few experiments on carbon isotope fractionation and the magnitude of the isotopic enrichment factors (ε) involved, we measured propionate conversion to acetate, CH4 and CO2 in anoxic paddy soils. Propionate consumption was measured using samples of paddy soil from Vercelli (Italy) and the International Rice Research Institute (IRRI, the Philippines) suspended in a phosphate buffer (pH 7.0) both in the absence and presence of sulfate (gypsum) and of methyl fluoride (CH3F), an inhibitor of aceticlastic methanogenesis. Under methanogenic conditions, propionate was eventually degraded to CH4, with acetate being a transient intermediate. Butyrate was also a minor intermediate. Methane was mainly produced by aceticlastic methanogenesis. Propionate consumption was inhibited by CH3F. Butyrate and CH4 were 13C-depleted relative to propionate, whereas acetate and CO2 were 13C-enriched. The isotopic enrichment factors (εprop) of propionate consumption, determined by Mariotti plots, were in a range of −8 ‰ to −3.5 ‰. Under sulfidogenic conditions, acetate was also transiently accumulated, but CH4 production was negligible. Application of CH3F hardly affected propionate degradation and acetate accumulation. The initially produced CO2 was 13C-depleted, whereas the acetate was 13C-enriched. The values of εprop were −3.5 ‰. It is concluded that the degradation of organic carbon via propionate to acetate and CO2 involves only a little isotope fractionation. The results further indicate a major contribution of Syntrophobacter-type propionate fermentation under sulfidogenic conditions and Smithella-type propionate fermentation under methanogenic conditions. This interpretation is consistent with data regarding the microbial community composition published previously for the same soils.

Funder

Fonds der Chemischen Industrie

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3