Broadband albedo of Arctic sea ice from MERIS optical data

Author:

Pohl Christine,Istomina Larysa,Tietsche SteffenORCID,Jäkel Evelyn,Stapf JohannesORCID,Spreen GunnarORCID,Heygster Georg

Abstract

Abstract. Arctic summer sea ice experiences rapid changes in its sea-ice concentration, surface albedo, and the melt pond fraction. This affects the energy balance of the region and demands an accurate knowledge of those surface characteristics in climate models. In this paper, the broadband albedo (300–3000 nm) of Arctic sea ice is derived from MEdium Resolution Imaging Spectrometer (MERIS) optical swath data by transforming the spectral albedo as an output from the Melt Pond Detector (MPD) algorithm with a newly developed spectral-to-broadband conversion (STBC). The new STBC replaces the previously applied spectral averaging method to provide a more accurate broadband albedo product, which approaches the accuracy of 0.02–0.05 required in climate simulations and allows a direct comparison to broadband albedo values from climate models. The STBC is derived empirically from spectral and broadband albedo measurements over landfast ice. It is validated on a variety of simultaneous spectral and broadband field measurements over Arctic sea ice, is compared to existing conversion techniques, and performs better than the currently published algorithms. The root-mean-square deviation (RMSD) between broadband albedo that was measured and converted by the STBC is 0.02. Other conversion techniques, the spectral averaging method and the linear combination of albedo values from four MERIS channels, result in higher RMSDs of 0.09 and 0.05, respectively. The improved MERIS-derived broadband albedo values are validated with airborne measurements. Results show a smaller RMSD of 0.04 for landfast ice than the RMSD of 0.07 for drifting ice. The MERIS-derived broadband albedo is compared to broadband albedo from ERA5 reanalysis to examine the albedo parameterization used in ERA5. Both albedo products agree over large scales and in temporal patterns. However, consistency in point-to-point comparison is rather poor, with differences up to 0.20, correlations between 0.69 and 0.79, and RMSDs in excess of 0.10. Differences in sea-ice concentration and cloud-masking uncertainties play a role, but most discrepancies can be attributed to climatological sea-ice albedo values used in ERA5. They are not adequate and need revising, in order to better simulate surface heat fluxes in the Arctic. The advantage of the resulting broadband albedo data set from MERIS over other published data sets is the accompanied data set of available melt pond fraction. Melt ponds are the main reason for the sea-ice albedo change in summer but are currently not represented in climate models and atmospheric reanalysis. Additional information about melt evolution, together with accurate albedo retrievals, can aid the challenging representation of sea-ice optical properties in those models in summer.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Reference69 articles.

1. Bannehr, L. and Schwiesow, R.: A Technique to Account for the Misalignment of Pyranometers Installed on Aircraft, J. Atmos. Ocean. Tech., 10, 774–777, https://doi.org/10.1175/1520-0426(1993)010<0774:ATTAFT>2.0.CO;2, 1993. a, b

2. Bierwirth, E., Wendisch, M., Ehrlich, A., Heese, B., Tesche, M., Althausen, D., Schladitz, A., Müller, D., Otto, S., Trautmann, T., Dinter, T., Hoyningen-Huene, W. V., and Kahn, R.: Spectral surface albedo over Morocco and its impact on radiative forcing of Saharan dust, Tellus B, 61, 252–269, https://doi.org/10.1111/j.1600-0889.2008.00395.x, 2009. a

3. Birnbaum, G., Dierking, W., Hartmann, J., Lüpkes, C., Ehrlich, A., Garbrecht, T., and Sellmann, L.: The campaign MELTEX with research aircraft ”POLAR 5” in the Arctic in 2008, Berichte zur Polar-und Meeresforschung (Reports on Polar and Marine Research), 593, 93 pp., 2009. a, b, c

4. Bourgeois, C. S., Calanca, P., and Ohmura, A.: A field study of the hemispherical directional reflectance factor and spectral albedo of dry snow, J. Geophys. Res.-Atmos., 111, D20108, https://doi.org/10.1029/2006JD007296, 2006. a

5. CERES-EBAF: CERES_EBAF_Ed2.8 Data Quality Summary, available at: https://ceres.larc.nasa.gov/documents/DQ_summaries/CERES_EBAF_Ed2.8_DQS.pdf (last access: 20 December 2018), 2014. a, b

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3