A simple model for the earthquake cycle combining self-organized complexity with critical point behavior

Author:

Newman W. I.,Turcotte D. L.

Abstract

Abstract. We have studied a hybrid model combining the forest-fire model with the site-percolation model in order to better understand the earthquake cycle. We consider a square array of sites. At each time step, a "tree" is dropped on a randomly chosen site and is planted if the site is unoccupied. When a cluster of "trees" spans the site (a percolating cluster), all the trees in the cluster are removed ("burned") in a "fire." The removal of the cluster is analogous to a characteristic earthquake and planting "trees" is analogous to increasing the regional stress. The clusters are analogous to the metastable regions of a fault over which an earthquake rupture can propagate once triggered. We find that the frequency-area statistics of the metastable regions are power-law with a negative exponent of two (as in the forest-fire model). This is analogous to the Gutenberg-Richter distribution of seismicity. This "self-organized critical behavior" can be explained in terms of an inverse cascade of clusters. Small clusters of "trees" coalesce to form larger clusters. Individual trees move from small to larger clusters until they are destroyed. This inverse cascade of clusters is self-similar and the power-law distribution of cluster sizes has been shown to have an exponent of two. We have quantified the forecasting of the spanning fires using error diagrams. The assumption that "fires" (earthquakes) are quasi-periodic has moderate predictability. The density of trees gives an improved degree of predictability, while the size of the largest cluster of trees provides a substantial improvement in forecasting a "fire."

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3