The role of wind, mesoscale dynamics, and coastal circulation in the interannual variability of the South Vietnam Upwelling, South China Sea – answers from a high-resolution ocean model

Author:

To Duy Thai,Herrmann Marine,Estournel Claude,Marsaleix Patrick,Duhaut Thomas,Bui Hong Long,Trinh Bich Ngoc

Abstract

Abstract. The South Vietnam Upwelling (SVU) develops in the South China Sea (SCS) under the influence of southwest monsoon winds. To study the role of small spatiotemporal scales on the SVU functioning and variability, a simulation was performed over 2009–2018 with a high-resolution configuration (1 km at the coast) of the SYMPHONIE model implemented over the western region of the SCS. Its capability to represent ocean dynamics and water masses from daily to interannual scales and from coastal to regional areas is quantitatively demonstrated by comparison with available satellite data and four in situ datasets. The SVU interannual variability is examined for the three development areas already known: the southern (SCU) and northern (NCU) coastal upwelling areas and the offshore upwelling area (OFU). Our high-resolution model, together with in situ observations and high-resolution satellite data, moreover shows for the first time that upwelling develops over the Sunda Shelf off the Mekong Delta (MKU). Our results confirm for the SCU and OFU and show for the MKU the role of the mean summer intensity of wind and cyclonic circulation over the offshore area in driving the interannual variability of the upwelling intensity. They further reveal that other factors contribute to SCU and OFU variability. First, the intraseasonal wind chronology strengthens (in the case of regular wind peaks occurring throughout the summer for SCU or of stronger winds in July–August for OFU) or weakens (in the case of intermittent wind peaks for SCU) the summer average upwelling intensity. Second, the mesoscale circulation influences this intensity (multiple dipole eddies and associated eastward jets developing along the coast enhance the SCU intensity). The NCU interannual variability is less driven by the regional-scale wind (with weaker monsoon favoring stronger NCU) and more by the mesoscale circulation in the NCU area: the NCU is prevented (favored) when alongshore (offshore) currents prevail.

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

Reference80 articles.

1. Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/OS-11-67-2015, 2015.

2. Belharet, M., Estournel, C., and Charmasson, S.: Ecosystem model-based approach for modeling the dynamics of 137Cs transfer to marine plankton populations: application to the western North Pacific Ocean after the Fukushima nuclear power plant accident, Biogeosciences, 13, 499–516, https://doi.org/10.5194/bg-13-499-2016, 2016.

3. Bombar, D., Dippner, J. W., Doan, H. N., Ngoc, L. N., Liskow, I., Loick-Wilde, N., and Voss, M.: Sources of new nitrogen in the Vietnamese upwelling region of the South China Sea, J. Geophys. Res.-Ocean., 115, 6018, https://doi.org/10.1029/2008JC005154, 2010.

4. Boutin, J., Vergely, J. L., Marchand, S., D'Amico, F., Hasson, A., Kolodziejczyk, N., Reul, N., Reverdin, G., and Vialard, J.: New SMOS Sea Surface Salinity with reduced systematic errors and improved variability, Remote Sens. Environ., 214, 115–134, https://doi.org/10.1016/J.RSE.2018.05.022, 2018.

5. Center for International Earth Science Information Network – CIESIN – Columbia University: Gridded Population of the World, Version 4 (GPWv4), Population Density, Revision 11, https://doi.org/10.7927/H49C6VHW, 2018.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3