Numerical simulation of the impact of Anatolian and Caucasus Mountains on the precipitation distribution over the Black Sea

Author:

Ghafarian P.,Azadi M.,Meshkatee A. H.,Farahani M. M.

Abstract

Abstract. An attempt is made to examine the role of Anatolian and Caucasus mountain ranges in the precipitation distribution over the Black Sea region and to clarify the dynamical and physical mechanisms responsible for precipitation distribution over the region. Existence of a complex topography in the southern and eastern part of the Black Sea region makes it an important region for cyclogenesis. In this study the effect of Anatolian and Caucasus Mountains on the precipitating synoptic systems forming over the Black Sea are investigated. To this end, the Weather Research and Forecasting (WRF) model at 15-km horizontal grid spacing has been used to evaluate the lifetime of a low pressure system that was accompanied with heavy precipitation on 14 March 2009 over the coastal region of the Black Sea. Two experiments were conducted. In the control experiment (CTL), the topographical features of the region were retained. In the sensitivity experiment (EXP), the Anatolian and Caucasus mountain ranges were removed. It is found that in the EXP, some fields including vertical motion, relative vorticity, humidity, geopotential height in low level, cloud water content and precipitation distribution in the region undergo significant changes. As such, in the EXP, the vorticity, and the cut-off low system over the Black Sea intensified. It is also seen that, under favorable conditions for precipitation occurrence, the precipitation intensity in the south and east coasts of the Black Sea decreased and the region of maximum precipitation shifted toward the "Sea of Azov" region, in the direction of the surface southerly winds.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3