Basaltic feeder dykes in rift zones: geometry, emplacement, and effusion rates

Author:

Galindo I.,Gudmundsson A.

Abstract

Abstract. Most volcanic hazards depend on an injected dyke reaching the surface to form a feeder. Assessing the volcanic hazard in an area is thus related to understanding the condition for the formation of a feeder dyke in that area. For this latter, we need good field data on feeder dykes, their geometries, internal structures, and other characteristics that distinguish them from non-feeders. Unfortunately, feeder dykes are rarely observed, partly because they are commonly covered by their own products. For this reason, outcrops are scarce and usually restricted to cliffs, ravines, and man-made outcrops. Here we report the results of a study of feeder dykes in Tenerife (Canary Islands, Spain) and Iceland, focusing on their field characteristics and how their propagation is affected by existing structures. Although Holocene fissure eruptions have been common in both islands, only eleven basaltic feeder dykes have been identified: eight in Tenerife and three in Iceland. They are all well preserved and the relation with the eruptive fissure and/or the deposits is well exposed. While the eruptive fissures are generally longer in Iceland than in Tenerife, their feeders show many similarities, the main ones being that the feeder dykes (1) are generally sheet-shaped; (2) are segmented (as are the associated volcanic fissures); (3) normally contain elongated (prolate ellipsoidal) cavities in their central, topmost parts, that is, 2–3 m below the surface (with solidified magma drops on the cavity walls); (4) contain vesicles which increase in size and number close to the surface; (5) sometimes inject oblique dyke fingers into the planes of existing faults that cross the dyke paths; and (6) may reactivate, that is, trigger slip on existing faults. We analyse theoretically the feeder dyke of the 1991 Hekla eruption in Iceland. Our results indicate that during the initial peak in the effusion rate the opening (aperture) of the feeder dyke was as wide as 0.77 m, but quickly decreased to about 0.56 m. During the subsequent decline in the effusion rate to a minimum, the aperture decreased to about 0.19 m. At a later abrupt increase in the effusion rate, the feeder-dyke opening may have increased to about 0.34 m, and then decreased again as the effusion rate gradually declined during the end stages of the eruption. These thickness estimates fit well with those of many feeders in Iceland and Tenerife, and with the general dyke thickness within fossil central volcanoes in Iceland.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference77 articles.

1. Acocella, V. and Neri, M.: What makes flank eruptions? The 2001 Etna eruption and its possible triggering mechanism, B. Volcanol., 65, 517–529, 2003.

2. Acocella, V. and Neri, M.: Dike propagation in volcanic edifices: overview and possible development, Tectonophysics, 471, 67–77, 2009.

3. Acocella, V., Neri, M., and Sulpizio, R.: Dike propagation within active central volcanic edifices: constraints from Somma-Vesuvius, Etna and analogue models, B. Volcanol., 71, 219–223, 2009.

4. Atkinson, S. S. and Lambert, R. J.: The Roza Member feeder dyke system, Columbia River Basalt Group, USA, Compositional variation and emplacement. Mafic dykes and emplacement mechanisms, edited by: Parker, A. J., Rickwood, P. C., and Tucker, D. H., Balkema, Rotterdam, 447–459, 1990.

5. Bear, J.: Dynamics of Fluids in Porous Media, Elsevier, Amsterdam, 726 pp., 1972.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3