Recent changes in the number of rainfall events related to debris-flow occurrence in the Chenyulan Stream Watershed, Taiwan

Author:

Chen J. C.,Huang W. S.,Jan C. D.,Yang Y. H.

Abstract

Abstract. This study analyzed the variability in the number of rainfall events related to debris-flow occurrence in the Chenyulan stream watershed located in central Taiwan. Rainfall data between 1970 and 2009 measured at three meteorological stations nearby/in the watershed were collected and used to determine the corresponding regional average rainfall for the watershed. Data on debris-flow events between 1985 and 2009 were collected and used to study their dependence on regional average rainfall. The maximum 24-h regional rainfall Rd was used to analyze the number of rainfall events Nr, the number of rainfall events that triggered debris flows Nd, and the probability of debris-flows occurrences P. The variation trends in Nr, Nd and P over recent decades under three rainfall conditions (Rd > 20, 230, and 580 mm) related to debris-flow occurrence were analyzed. In addition, the influences of the Chi-Chi earthquake on Nd and P were presented. The results showed that the rainfall events with Rd > 20 mm during the earthquake-affected period (2000–2004) strongly responded to the increases in the average number of rainfall events that triggered debris flows and the average probability of debris-flows occurrences. The number of rainfall events with Rd > 230 mm (the lower boundary for the rainfall ever triggering debris flow before the Chi-Chi earthquake), and Rd > 580 mm (the lower boundary for extreme rainfall ever triggering numerous debris flows) in the Chenyulan stream watershed increased after 2000. The increase in the number of extreme rainfall events with Rd > 580 mm augmented the number of rainfall events ever triggering numerous debris flows in the last decade. The increase in both the number of rainfall events that ever triggered debris flows and the probability of debris-flow occurrences was greater in the last decade (2000–2009) than in 1990–1999.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3