Recurring features of extreme autumnall rainfall events on the Veneto coastal area

Author:

Barbi A.,Monai M.,Racca R.,Rossa A. M.

Abstract

Abstract. Recent recurring episodes of heavy flash flood-producing rainfall events on the Veneto coastal area have renewed the interest in documenting the frequency and key dynamical ingredients of such events. A climatological analysis of the precipitation in Veneto reveals that, in comparison with the rest of the region, the coastal area is characterized by fewer rain days, lower rainfall accumulations, yet more days with heavy precipitation. If set in relation to the yearly rainfall, daily accumulation can reach values as high as 40% of the yearly total rainfall, more regularly between 15% and 30%, often in periods of 12 h or less. Four such heavy rainfall events were analyzed and synthetically described to highlight key ingredients which appear instrumental in producing the high rainfall accumulations. These comprise an upper-level trough elongating or cutting off into the Western Mediterranean basin after a period of one to two weeks of anticyclonic fair weather conditions with temperatures above normal. The moisture supply over the Adriatic onto north-eastern Italy is favoured by above normal sea surface temperatures, enhanced advection by a surface low in the Gulf of Genoa, and in three of the four cases, an additional surface low over southern Italy. The air flows associated with the upper-level trough for the cases discussed were of moderate to weak intensity, and convectively conditionally unstable. The flow intensity was such that the lower tropospheric portion was blocked by and forced to flow around the Alpine barrier, i.e. manifesting as a north-easterly, low-level flow over much of the north-eastern Italian plains. This blocked flow seemed to interact with the larger-scale synoptic flow to form a distinct and persistent low-level convergence in the area of the Veneto coast. It is suggested that these low-level convergence patterns are key in releasing the convective instability present in the larger-scale flow just on the Veneto coastal area. Hereby, it is the synoptic rather than the convective setting which dictated the observed timescales of intense rainfall. Therefore, the convective rainfall rates paired with the synoptic durations combine to produce the exceptionally high rainfall accumulations observed. Cases like these are significant contributors to forming the coastal precipitation climatology, which for this area is found to be distinctly different than for the rest of the region in terms of precipitation concentration.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference20 articles.

1. Barbi, A., Millini, R., Monai, M., and Sofia, S.: Meteo-climatic features of the Venice Lagoon, in: Flooding and Environmental Challenges for Venice and its Lagoon: State of Knowledge, edited by: Fletcher, C. A. and Spencer, T., Cambridge University Press, Cambridge, UK, 79–84, 2005.

2. Barbi, A., Formentini, G., and Monai, M.: The 26TH September 2007 Venice extreme convective rainfall event. Extended abstract, Poster session in 15th International Conference on Clouds and Precipitation, Cancun-Mexico, 7–11 Luglio 2008, available at: http://cabernet.atmosfcu.unam.mx/ICCP-2008/, 2008.

3. Bougeault, P., Binder, P., Buzzi, A., Dirks, R., Houze, R., Kuettner, J., Smith, R. B., Steinacker, R., and Volkert, H.: The MAP Special Observing Period, B. Am. Meteorol. Soc., 82, 433–462, 2001.

4. Camuffo, D., Tampieri, F., and Zambon, G.: Local mesoscale circulation over Venice as a result of the mountain-sea interaction, Bound.-Lay. Meteorol., 16, 83–92, 1979.

5. Davolio, S., Mastrangelo, D., Miglietta, M. M., Drofa, O., Buzzi, A., and Malguzzi, P.: High resolution simulations of a flash flood near Venice, Nat. Hazards Earth Syst. Sci., 9, 1671–1678, https://doi.org/10.5194/nhess-9-1671-2009, 2009.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3