Searching for the seafloor signature of the 21 May 2003 Boumerdès earthquake offshore central Algeria

Author:

Cattaneo A.,Babonneau N.,Ratzov G.,Dan-Unterseh G.,Yelles K.,Bracène R.,Mercier de Lépinay B.,Boudiaf A.,Déverchère J.

Abstract

Abstract. Shaking by moderate to large earthquakes in the Mediterranean Sea has proved in the past to potentially trigger catastrophic sediment collapse and flow. On 21 May 2003, a magnitude 6.8 earthquake located near Boumerdès (central Algerian coast) triggered large turbidity currents responsible for 29 submarine cable breaks at the foot of the continental slope over ~150 km from west to east. Seafloor bathymetry and backscatter imagery show the potential imprints of the 2003 event and of previous events. Large slope scarps resulting from active deformation may locally enhance sediment instabilities, although faults are not directly visible at the seafloor. Erosion is evident at the foot of the margin and along the paths of the numerous canyons and valleys. Cable breaks are located at the outlets of submarine valleys and in areas of turbiditic levee overspilling and demonstrate the multi-source and multi-path character of the 2003 turbiditic event. Rough estimates of turbidity flow velocity are not straightforward because of the multiple breaks along the same cable, but seem compatible with those measured in other submarine cable break studies elsewhere. While the signature of the turbidity currents is mostly erosional on the continental slope, turbidite beds alternating with hemipelagites accumulate in the distal reaches of sediment dispersal systems. In perspective, more chronological work on distal turbidite successions offshore Algeria offers promising perspectives for paleoseismology reconstructions based on turbidite dating, if synchronous turbidites along independent sedimentary dispersal systems are found to support triggering by major earthquakes. Preliminary results on sediment core PSM-KS23 off Boumerdès typically show a 800-yr interval between turbidites during the Holocene, in accordance with the estimated mean seismic cycle on land, even if at this stage it is not yet possible to prove the earthquake origin of all the turbidites.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3