Accurate satellite-derived estimates of the tropospheric ozone impact on the global radiation budget
Author:
Joiner J.,Schoeberl M. R.,Vasilkov A. P.,Oreopoulos L.,Platnick S.,Livesey N. J.,Levelt P. F.
Abstract
Abstract. Estimates of the radiative forcing due to anthropogenically-produced tropospheric O3 are derived primarily from models. Here, we use tropospheric ozone and cloud data from several instruments in the A-train constellation of satellites as well as information from the GEOS-5 Data Assimilation System to accurately estimate the radiative effect of tropospheric O3 for January and July 2005. Since we cannot distinguish between natural and anthropogenic sources with the satellite data, our derived radiative effect reflects the unadjusted (instantaneous) effect of the total tropospheric O3 rather than the anthropogenic component. We improve upon previous estimates of tropospheric ozone mixing ratios from a residual approach using the NASA Earth Observing System (EOS) Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) by incorporating cloud pressure information from OMI. We focus specifically on the magnitude and spatial structure of the cloud effect on both the short- and long-wave radiative budget. The estimates presented here can be used to evaluate the various aspects of model-generated radiative forcing. For example, our derived cloud impact is to reduce the radiative effect of tropospheric ozone by ~16%. This is centered within the published range of model-produced cloud effect on instantaneous radiative forcing.
Publisher
Copernicus GmbH
Reference65 articles.
1. Berntsen,~T K., Isaksen,~I S A., Myhre,~G., Fuglestvedt,~J S., Stordal,~F T., Larsen,~A., Freckleton,~R S., and Shine,~K P.: Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing,~J. Geophys. Res., 102, 28101–28126, 1997. 2. Bhartia,~P K., and Wellemeyer,~C W.: TOMS-V8 total \\chemO_3 Algorithm, OMI Algorithm Theoretical Basis Document, vol. 2, edited by: Bhartia, P K., Greenbelt, Md, http://toms.gsfc.nasa.gov/version8/v8toms_atbd.pdf, 2002. 3. Chameides,~W L., Luo,~C., Saylor,~R., Streets,~D., Huang,~Y., Bergin,~M., and Giorgi,~F.: Correlation between model-calculated anthropogenic aerosols and satellite-derived cloud optical depths: Indication of indirect effect?, J. Geophys. Res., 107, 4085, https://doi.org/10.1029/2000JD000208, 2002. 4. Chou,~M.-D. and Suarez,~M J.: An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo 104606, 3, 85 pp., 1994. 5. Chou,~M.-D. and Suarez,~M J.: A~solar radiation parameterization for atmospheric studies, NASA Tech. Memo 104606, 15, 40 pp., 2002.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|