An empirical MLR for estimating surface layer DIC and a comparative assessment to other gap-filling techniques for ocean carbon time series

Author:

Vance Jesse M.ORCID,Currie Kim,Zeldis John,Dillingham Peter W.,Law Cliff S.ORCID

Abstract

Abstract. Regularized time series of ocean carbon data are necessary for assessing seasonal dynamics, annual budgets, and interannual and climatic variability. There are, however, no standardized methods for filling data gaps and limited evaluation of the impacts on uncertainty in the reconstructed time series when using various imputation methods. Here we present an empirical multivariate linear regression (MLR) model to estimate the concentration of dissolved inorganic carbon (DIC) in the surface ocean, that can utilize remotely sensed and modeled data to fill data gaps. This MLR was evaluated against seven other imputation models using data from seven long-term monitoring sites in a comparative assessment of gap-filling performance and resulting impacts on variability in the reconstructed time series. Methods evaluated included three empirical models – MLR, mean imputation, and multiple imputation by chained equation (MICE) – and five statistical models – linear, spline, and Stineman interpolation; exponential weighted moving average; and Kalman filtering with a state space model. Cross validation was used to determine model error and bias, while a bootstrapping approach was employed to determine sensitivity to varying data gap lengths. A series of synthetic gap filters, including 3-month seasonal gaps (spring, summer, autumn winter), 6-month gaps (centered on summer and winter), and bimonthly (every 2 months) and seasonal (four samples per year) sampling regimes, were applied to each time series to evaluate the impacts of timing and duration of data gaps on seasonal structure, annual means, interannual variability, and long-term trends. All models were fit to time series of monthly mean DIC, with MLR and MICE models also applied to both measured and modeled temperature and salinity with remotely sensed chlorophyll. Our MLR estimated DIC with a mean error of 8.8 µmol kg−1 among five oceanic sites and 20.0 µmol kg−1 for two coastal sites. The MLR performance indicated reanalysis data, such as GLORYS, can be utilized in the absence of field measurements without increasing error in DIC estimates. Of the methods evaluated in this study, empirical models did better than statistical models in retaining observed seasonal structure but led to greater bias in annual means, interannual variability, and trends compared to statistical models. Our MLR proved to be a robust option for imputing data gaps over varied durations and may be trained with either in situ or modeled data depending on application. This study indicates that the number and distribution of data gaps are important factors in selecting a model that optimizes uncertainty while minimizing bias and subsequently enables robust strategies for observational sampling.

Funder

National Institute of Water and Atmospheric Research

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference77 articles.

1. Alin, S. R., Feely, R. A., Dickson, A. G., Hernández-Ayón, J. M., Juranek, L. W., Ohman, M. D., and Goericke, R.: Robust empirical relationships for estimating the carbonate system in the southern California Current System and application to CalCOFI hydrographic cruise data (2005-2011), J. Geophys. Res.-Oceans, 117, C05033, https://doi.org/10.1029/2011jc007511, 2012.

2. Astor, Y. M., Scranton, M. I., Muller-Karger, F., Bohrer, R., and García, J.: fCO2 variability at the CARIACO tropical coastal upwelling time series station, Mar. Chem., 97, 245–261, https://doi.org/10.1016/j.marchem.2005.04.001, 2005.

3. Astor, Y. M., Lorenzoni, L., Thunell, R., Varela, R., Muller-Karger, F., Troccoli, L., Taylor, G. T., Scranton, M. I., Tappa, E., and Rueda, D.: Interannual variability in sea surface temperature and fCO2 changes in the Cariaco Basin, Deep-Sea Res. Pt. II, 93, 33–43, https://doi.org/10.1016/j.dsr2.2013.01.002, 2013.

4. Bates, N., Astor, Y., Church, M., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., and Santa-Casiano, M.: A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake of Anthropogenic CO2 and Ocean Acidification, Oceanography, 27, 126–141, https://doi.org/10.5670/oceanog.2014.16, 2014.

5. Bates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., and Johnson, R. J.: Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean, Biogeosciences, 9, 2509–2522, https://doi.org/10.5194/bg-9-2509-2012, 2012.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A 37-year record of ocean acidification in the Southern California current;Communications Earth & Environment;2023-11-03

2. Predicting Carbonate Chemistry on the Northwest Atlantic Shelf Using Neural Networks;Journal of Geophysical Research: Biogeosciences;2023-07

3. Trend-Aware Data Imputation Based on Generative Adversarial Network for Time Series;International Journal of Information Technologies and Systems Approach;2023-06-27

4. Advancing best practices for assessing trends of ocean acidification time series;Frontiers in Marine Science;2022-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3