Deriving polarization properties of desert-reflected solar spectra with PARASOL data

Author:

Sun W.,Baize R. R.,Lukashin C.,Hu Y.ORCID

Abstract

Abstract. One of the major objectives of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) is to conduct highly accurate spectral observations to provide an on-orbit inter-calibration standard for relevant Earth-observing sensors with various channels. To calibrate an Earth-observing sensor's measurements with the highly accurate data from the CLARREO, errors in the measurements caused by the sensor's sensitivity to the polarization state of light must be corrected. For correction of the measurement errors due to the light's polarization, both the instrument's dependence on the incident polarization state and the on-orbit knowledge of the polarization state of light as a function of observed scene type, viewing geometry, and solar wavelength are required. In this study, an algorithm for deriving the spectral polarization state of solar light from the desert is reported. The desert/bare land surface is assumed to be composed of two types of areas: fine sand grains with diffuse reflection (Lambertian non-polarizer) and quartz-rich sand particles with facets of various orientations (specular-reflection polarizer). The Adding–Doubling Radiative Transfer Model (ADRTM) is applied to integrate the atmospheric absorption and scattering in the system. Empirical models are adopted in obtaining the diffuse spectral reflectance of sands and the optical depth of the dust aerosols over the desert. The ratio of non-polarizer area to polarizer area and the angular distribution of the facet orientations are determined by fitting the modeled polarization states of light to the measurements at three polarized channels (490, 670, and 865 nm) by the Polarization and Anisotropy of Reflectances for Atmospheric Science instrument coupled with Observations from a Lidar (PARASOL). Based on this physical model of the surface, the desert-reflected solar light's polarization state at any wavelength in the whole solar spectra can be calculated with the ADRTM.

Funder

Langley Research Center

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference44 articles.

1. Aoki, T., Mikami, M., and Liu, W.: Spectral albedos of desert surfaces and size distributions of soil particles measured around Qira and Aksu in the Taklimakan Desert, J. Arid Land Studies, 11, 259–266, 2002.

2. Bowker, D., Davis, R., Myrick, D., Stacy, K., and Jones, W.: Spectral reflectances of natural targets for use in remote sensing studies, NASA RP-1139, NASA Langley Research Center, Hampton, Virginia, USA, 1985.

3. Bréon, F.-M., Tanré, D., Lecomte, P., and Herman, M.: Polarized reflectance of bare soils and vegetation: measurements and models, IEEE T. Geosci. Remote Sens., 33, 487–499, 1995.

4. Clough, S. A. and Iacono, M. J.: Line-by-line calculations of atmospheric fluxes and cooling rates II: Application to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons, J. Geophys. Res., 100, 16519–16535, 1995.

5. Clough, S. A., Iacono, M. J., and Moncet, J.-L.: Line-by-line calculation of atmospheric fluxes and cooling rates: Application to water vapor, J. Geophys. Res., 97, 15761–15785, 1992.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3