Assessment of the Level-3 MODIS daily aerosol optical depth in the context of surface solar radiation and numerical weather modeling
-
Published:2013-01-18
Issue:2
Volume:13
Page:675-692
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ruiz-Arias J. A.ORCID, Dudhia J., Gueymard C. A., Pozo-Vázquez D.
Abstract
Abstract. The daily Level-3 MODIS aerosol optical depth (AOD) product is a global daily spatial aggregation of the Level-2 MODIS AOD (10-km spatial resolution) into a regular grid with a resolution of 1° × 1°. It offers interesting characteristics for surface solar radiation and numerical weather modeling applications. However, most of the validation efforts so far have focused on Level-2 products and only rarely on Level 3. In this contribution, we compare the Level-3 Collection 5.1 MODIS AOD dataset from the Terra satellite available since 2000 against observed daily AOD values at 550 nm from more than 500 AERONET ground stations around the globe. Overall, the mean error of the dataset is 0.03 (17%, relative to the mean ground-observed AOD), with a root mean square error of 0.14 (73%, relative to the same), but these errors are also found highly dependent on geographical region. We propose new functions for the expected error of the Level-3 AOD, as well as for both its mean error and its standard deviation. Additionally, we investigate the role of pixel count vis-à-vis the reliability of the AOD estimates, and also explore to what extent the spatial aggregation from Level 2 to Level 3 influences the total uncertainty in the Level-3 AOD. Finally, we use a radiative transfer model to investigate how the Level-3 AOD uncertainty propagates into the calculated direct normal and global horizontal irradiances.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference36 articles.
1. Anderson, T., Charlson, R., Winker, D., Ogren, J., and Holm{é}n, K.: Mesoscale Variations of Tropospheric Aerosols, J. Atmos. Sci., 60, 119–136, https://doi.org/10.1175/1520-0469(2003)0602.0.CO;2, 2003. 2. Cebecauer, T., Šúri, M., and Gueymard, C.: Uncertainty sources in satellite-derived direct normal irradiance: how can prediction accuracy be improved globally?, in: Proc. SolarPACES Conf., Granada, Spain, 2011. 3. Chen, S., Wang, S., and Waylonis, M.: Modification of Saharan air layer and environmental shear over the eastern Atlantic Ocean by dust-radiation effects, J. Geophys. Res., 115, D21202, https://doi.org/10.1029/2010JD014158, 2010. 4. Chu, D., Kaufman, Y., Ichoku, C., Remer, L., Tanr{é}, D., and Holben, B.: Validation of MODIS aerosol optical depth retrieval over land, Geophys. Res. Lett., 29, 8007, https://doi.org/10.1175/JAS3385.1, 2002. 5. Eck, T., Holben, B., Reid, J., Dubovik, O., Smirnov, A., O'neill, N., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res., 104, 31333–31349, https://doi.org/10.1029/1999JD900923, 1999.
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|