Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy
-
Published:2013-07-01
Issue:13
Volume:13
Page:6185-6206
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Querol X., Alastuey A.ORCID, Viana M.ORCID, Moreno T.ORCID, Reche C., Minguillón M. C., Ripoll A., Pandolfi M., Amato F., Karanasiou A., Pérez N., Pey J.ORCID, Cusack M., Vázquez R., Plana F., Dall'Osto M., de la Rosa J., Sánchez de la Campa A., Fernández-Camacho R., Rodríguez S., Pio C., Alados-Arboledas L.ORCID, Titos G.ORCID, Artíñano B., Salvador P., García Dos Santos S., Fernández Patier R.
Abstract
Abstract. We interpret here the variability of levels of carbonaceous aerosols based on a 12 yr database from 78 monitoring stations across Spain specially compiled for this article. Data did not evidence any spatial trends of carbonaceous aerosols across the country. Conversely, results show marked differences in average concentrations from the cleanest, most remote sites (around 1 μg m−3 of non-mineral carbon (nmC), mostly made of organic carbon (OC) with very little elemental carbon (EC), around 0.1 μg m−3; OC / EC = 12–15), to the highly polluted major cities (8–10 μg m−3 of nmC; 3–4 μg m−3 of EC; 4–5 μg m−3 of OC; OC / EC = 1–2). Thus, urban (and very specific industrial) pollution was found to markedly increase levels of carbonaceous aerosols in Spain, with much lower impact of biomass burning and of biogenic emissions. Correlations between yearly averaged OC / EC and EC concentrations adjust very well to a potential equation (OC = 3.37 EC0.326, R2 = 0.8). A similar equation is obtained when including average concentrations obtained at other European sites (OC = 3.60EC0.491, R2 = 0.7). A clear seasonal variability in OC and EC concentrations was detected. Both OC and EC concentrations were higher during winter at the traffic and urban sites, but OC increased during the warmer months at the rural sites. Hourly equivalent black carbon (EBC) concentrations at urban sites accurately depict road traffic contributions, varying with distance from road, traffic volume and density, mixing-layer height and wind speed. Weekday urban rush-hour EBC peaks are mimicked by concentrations of primary gaseous emissions from road traffic, whereas a single midday peak is characteristic of remote and rural sites. Decreasing annual trends for carbonaceous aerosols were observed between 1999 and 2011 at a large number of stations, probably reflecting the impact of the EURO4 and EURO5 standards in reducing the diesel PM emissions. This has resulted in some cases in an increasing trend for NO2 / (OC + EC) ratios as these standards have been much less effective for the abatement of NOx exhaust emissions in passenger diesel cars. This study concludes that EC, EBC, and especially nmC and OC + EC are very good candidates for new air quality standards since they cover both emission impact and health-related issues.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference87 articles.
1. Aldabe, J., Elustondo, D, Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., and Santamaría, J. M.: Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain), Atmos. Res., 102, 191–205, 2011. 2. Alves, C. Vicente, A., Pio, C. Kiss, G., Hoffer, A., Decesari S., Prevôt A. S. H., Minguillón, M. C., Querol, X., Hillamo, R., Spindler G., and Swietlicki E.: Organic compounds in aerosols from selected European sites e Biogenic versus anthropogenic sources, Atmos. Environ., 59, 243–255, 2012. 3. Arhami, M., Kuhn, T., Fine, P. M., Delfino, R. J., and Sioutas, C.: Effects of sampling artifacts and operating parameters on the performance of a semicontinuous particulate elemental carbon/organic carbon monitor, Environ. Sci. Technol., 40, 945–954, 2006. 4. Arnott, W. P., Moosmüller, H., Sheridan, P. J., Ogren, J. A., Raspet, R., Slaton, W. V., Hand, J. L., Kreidenweis, S. M., and Collett Jr., J. L.: Photoacoustic and Filter-Based Ambient Aerosol Light Absorption Measurements: Instrument Comparisons and the Role of Relative Humidity, J. Geophys. Res., 108, 4034, https://doi.org/10.1029/2002JD002165, 2003. 5. Arnott, W. P., Hamasha, K., Moosmüller, H., Sheridan, P. J., and Ogren, J. A.: Towards Aerosol Light Absorption Measurements with a 7-wavelength Aethalometer: Evaluation with a Photoacoustic Instrument and 3 wavelength Nephelometer, Aerosol Sci. Tech., 39, 17–29, 2005.
Cited by
107 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|