The value of satellite observations in the analysis and short-range prediction of Asian dust

Author:

Benedetti AngelaORCID,Di Giuseppe FrancescaORCID,Jones Luke,Peuch Vincent-HenriORCID,Rémy Samuel,Zhang Xiaoye

Abstract

Abstract. Asian dust is a seasonal meteorological phenomenon which affects east Asia, and has severe consequences on the air quality of China, North and South Korea and Japan. Despite the continental extent, the prediction of severe episodes and the anticipation of their consequences is challenging. Three 1-year experiments were run to assess the skill of the model of the European Centre for Medium-Range Weather Forecasts (ECMWF) in monitoring Asian dust and understand its relative contribution to the aerosol load over China. Data used were the Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target and the Deep Blue aerosol optical depth (AOD). In particular the experiments aimed at understanding the added value of data assimilation runs over a model run without any aerosol data. The year 2013 was chosen as representative of the availability of independent AOD data from two established ground-based networks (AERONET, Aerosol Robotic Network, and CARSNET, China Aerosol Remote Sensing Network), which could be used to evaluate experiments. Particulate matter (PM) data from the China Environmental Protection Agency were also used in the evaluation. Results show that the assimilation of satellite AOD data is beneficial to predict the extent and magnitude of desert dust events and to improve the short-range forecast of such events. The availability of observations from the MODIS Deep Blue algorithm over bright surfaces is an asset, allowing for a better localization of the sources and definition of the dust events. In general both experiments constrained by data assimilation perform better than the unconstrained experiment, generally showing smaller normalized mean bias and fractional gross error with respect to the independent verification datasets. The impact of the assimilated satellite observations is larger at analysis time, but lasts into the forecast up to 48 h. The performance of the global model in terms of particulate matter does not show the same degree of skill as the performance in terms of optical depth. Despite this, the global model is able to capture some regional pollution patterns. This indicates that the global model analyses may be used as boundary conditions for regional air quality models at higher resolution, enhancing their performance in situations in which part of the pollution may have originated from large-scale mechanisms. While assimilation is not a substitute for model development and characterization of the emission sources, results indicate that it can play a role in delivering improved monitoring of Asian dust optical depth.

Funder

FP7 Space

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference45 articles.

1. Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data assimilation, J. Geophys. Res.-Atmos., 114, https://doi.org/10.1029/2008JD011115, 2009. a, b

2. Boucher, O., Pham, M., and Venkataraman, C.: Simulation of the atmospheric sulfur cycle in the Laboratoire de Météorologie Dynamique general circulation model: Model description, model evaluation, and global and European budgets, Note scientifique de l'IPSL, Institut Pierre Simon Laplace (IPSL), Paris, France, 21, 2002. a

3. Bozzo, A., Remy, S., Benedetti, A., Flemming, J., Bechtold, P., Rodwell, M., and Morcrette, J.-J.: Implementation of a CAMS-based aerosol climatology in the IFS, Technical Memorandum, 801, ECMWF, Reading, England, https://doi.org/10.21957/84ya94mls, 2017. a

4. Chauhan, A., Zheng, S., Xu, M., Cao, C., and Singh, R. P.: Characteristic changes in aerosol and meteorological parameters associated with dust event of 9 March 2013, Modeling Earth Systems and Environment, 2, 1–10, https://doi.org/10.1007/s40808-016-0236-1, 2016. a

5. Che, H., Zhang, X.-Y., Xia, X., Goloub, P., Holben, B., Zhao, H., Wang, Y., Zhang, X.-C., Wang, H., Blarel, L., Damiri, B., Zhang, R., Deng, X., Ma, Y., Wang, T., Geng, F., Qi, B., Zhu, J., Yu, J., Chen, Q., and Shi, G.: Ground-based aerosol climatology of China: aerosol optical depths from the China Aerosol Remote Sensing Network (CARSNET) 2002–2013, Atmos. Chem. Phys., 15, 7619–7652, https://doi.org/10.5194/acp-15-7619-2015, 2015. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3