Photochemical aging of atmospherically reactive organic compounds involving brown carbon at the air–aqueous interface

Author:

Li SiyangORCID,Jiang Xiaotong,Roveretto Marie,George ChristianORCID,Liu Ling,Jiang Wei,Zhang Qingzhu,Wang Wenxing,Ge MaofaORCID,Du LinORCID

Abstract

Abstract. Water-soluble brown carbon in the aqueous core of aerosol may play a role in the photochemical aging of organic film on the aerosol surface. To better understand the reactivity and photochemical aging processes of organic coating on the aqueous aerosol surface, we have simulated the photosensitized reaction of organic films made of several long-chain fatty acids in a Langmuir trough in the presence or absence of irradiation. Several chemicals (imidazole-2-carboxaldehyde and humic acid), PM2.5 samples collected from the field, and secondary organic aerosol samples generated from a simulation chamber were used as photosensitizers to be involved in the photochemistry of the organic films. Stearic acid, elaidic acid, oleic acid, and two different phospholipids with the same carbon chain length and different degrees of saturation, i.e. 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dioleoylsn-glycero-3-phosphocholine (DOPC), were chosen as the common organic film-forming species in this analysis. The double bond (trans and cis) in unsaturated organic compounds has an effect on the surface area of the organic monolayer. The oleic acid (OA) monolayer possessing a cis double bond in an alkyl chain is more expanded than elaidic acid (EA) monolayers on artificial seawater that contain a photosensitizer. Monitoring the change in the relative area of DOPC monolayers has shown that DOPC does not react with photosensitizers under dark conditions. Instead, the photochemical reaction initiated by the excited photosensitizer and molecular oxygen can generate new unsaturated products in the DOPC monolayers, accompanied by an increase in the molecular area. The DSPC monolayers did not yield any photochemical oxidized products under the same conditions. The spectra measured with polarization modulation-infrared reflection–absorption spectroscopy (PM-IRRAS) were also consistent with the results of a surface pressure–area isotherm. Here, a reaction mechanism explaining these observations is presented and discussed. The results of PM2.5 and SOA samples will contribute to our understanding of the processing of organic aerosol aging that alters the aerosol composition.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference114 articles.

1. Ackendorf, J. M., Ippolito, M. G., and Galloway, M. M.: pH Dependence of the Imidazole-2-carboxaldehyde Hydration Equilibrium: Implications for Atmospheric Light Absorbance, Environ. Sci. Tech. Let., 4, 551–555, https://doi.org/10.1021/acs.estlett.7b00486, 2017.

2. Adams, E. M., Verreault, D., Jayarathne, T., Cochran, R. E., Stone, E. A., and Allen, H. C.: Surface organization of a DPPC monolayer on concentrated SrCl2 and ZnCl2 solutions, Phys. Chem. Chem. Phys., 18, 32345–32357, https://doi.org/10.1039/c6cp06887a, 2016.

3. Adams, E. M., Wellen, B. A., Thiraux, R., Reddy, S. K., Vidalis, A. S., Paesani, F., and Allen, H. C.: Sodium-carboxylate contact ion pair formation induces stabilization of palmitic acid monolayers at high pH, Phys. Chem. Chem. Phys., 19, 10481–10490, https://doi.org/10.1039/c7cp00167c, 2017.

4. Aguer, J. P., Richard, C., and Andreux, F.: Effect of light on humic substances: Production of reactive species, Analusis, 27, 387–390, https://doi.org/10.1051/analusis:1999270387, 1999.

5. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O∕C and OM∕OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3