Modelling land–atmosphere daily exchanges of NO, NH<sub>3</sub>, and CO<sub>2</sub> in a semi-arid grazed ecosystem in Senegal

Author:

Delon Claire,Galy-Lacaux Corinne,Serça DominiqueORCID,Personne ErwanORCID,Mougin Eric,Adon Marcellin,Le Dantec Valérie,Loubet Benjamin,Fensholt Rasmus,Tagesson Torbern

Abstract

Abstract. Three different models (STEP–GENDEC–NOflux, Zhang2010, and Surfatm) are used to simulate NO, CO2, and NH3 fluxes at the daily scale for 2 years (2012–2013) in a semi-arid grazed ecosystem at Dahra (15∘24′10′′ N, 15∘25′56′′ W, Senegal, Sahel). Model results are evaluated against experimental results acquired during three field campaigns. At the end of the dry season, when the first rains re-wet the dry soils, the model STEP–GENDEC–NOflux simulates the sudden mineralization of buried litter, leading to pulses in soil respiration and NO fluxes. The contribution of wet season fluxes of NO and CO2 to the annual mean is respectively 51 % and 57 %. NH3 fluxes are simulated by two models: Surfatm and Zhang2010. During the wet season, air humidity and soil moisture increase, leading to a transition between low soil NH3 emissions (which dominate during the dry months) and large NH3 deposition on vegetation during wet months. Results show a great impact of the soil emission potential, a difference in the deposition processes on the soil and the vegetation between the two models with however a close agreement of the total fluxes. The order of magnitude of NO, NH3, and CO2 fluxes is correctly represented by the models, as well as the sharp transitions between seasons, specific to the Sahel region. The role of soil moisture in flux magnitude is highlighted, whereas the role of soil temperature is less obvious. The simultaneous increase in NO and CO2 emissions and NH3 deposition at the beginning of the wet season is attributed to the availability of mineral nitrogen in the soil and also to microbial processes, which distribute the roles between respiration (CO2 emissions), nitrification (NO emissions), volatilization, and deposition (NH3 emission/deposition). The objectives of this study are to understand the origin of carbon and nitrogen compounds exchanges between the soil and the atmosphere and to quantify these exchanges on a longer timescale when only a few measurements have been performed.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference99 articles.

1. Adon, M., Galy-Lacaux, C., Yoboué, V., Delon, C., Lacaux, J.P., Castera, P., Gardrat, E., Pienaar, J., Al Ourabi, H., Laouali, D., Diop, B., Sigha-Nkamdjou, L., Akpo, A., Tathy, J. P., Lavenu, F., and Mougin E.: Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers, Atmos. Chem. Phys., 10, 7467–7487, https://doi.org/10.5194/acp-10-7467-2010, 2010.

2. Adon, M., Galy-Lacaux, C., Delon, C., Yoboue, V., Solmon, F., and Kaptue Tchuente, A. T.: Dry deposition of nitrogen compounds (N2O , HNO3, NH3), sulfur dioxide and ozone in west and central African ecosystems using the inferential method, Atmos. Chem. Phys., 13, 11351–11374, https://doi.org/10.5194/acp-13-11351-2013, 2013.

3. Archibald, S. A., Kirton, A., van der Merwe, M. R., Scholes, R. J., Williams, C. A., and Hanan, N.: Drivers of inter-annual variability in Net Ecosystem Exchange in a semi-arid savanna ecosystem, South Africa, Biogeosciences, 6, 251–266, https://doi.org/10.5194/bg-6-251-2009, 2009.

4. Assouma, M. H, Serça, D., Guerin, F., Blanfort, V., Lecomte, P., Traoré, I., Ickowicz, A., Manlay, R. J., Bernoux, M., and Vayssières, J.: Livestock induces strong spatial heterogeneity of soil CO2, N2O, CH4 emissions within a semi-arid sylvo-pastoral landscape in West Africa, J. Arid Land, 9, 201–221, https://doi.org/10.1007/s40333-017-0001-y, 2017.

5. Austin, A. T., Yahdjian, L., Stark, J. M., Belnap, J., Porporato, A., Norton, U., Ravetta, D. A., and Schaeffer, S. M.: Water pulses and biogeochemical cycles in arid and semi-arid ecosystems, Oecologia, 141, 221–235, 2004.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3