Assessment of liquefaction-induced hazards using Bayesian networks based on standard penetration test data

Author:

Tang Xiao-Wei,Bai Xu,Hu Ji-Lei,Qiu Jiang-Nan

Abstract

Abstract. Liquefaction-induced hazards such as sand boils, ground cracks, settlement, and lateral spreading are responsible for considerable damage to engineering structures during major earthquakes. Presently, there is no effective empirical approach that can assess different liquefaction-induced hazards in one model. This is because of the uncertainties and complexity of the factors related to seismic liquefaction and liquefaction-induced hazards. In this study, Bayesian networks (BNs) are used to integrate multiple factors related to seismic liquefaction, sand boils, ground cracks, settlement, and lateral spreading into a model based on standard penetration test data. The constructed BN model can assess four different liquefaction-induced hazards together. In a case study, the BN method outperforms an artificial neural network and Ishihara and Yoshimine's simplified method in terms of accuracy, Brier score, recall, precision, and area under the curve (AUC) of the receiver operating characteristic (ROC). This demonstrates that the BN method is a good alternative tool for the risk assessment of liquefaction-induced hazards. Furthermore, the performance of the BN model in estimating liquefaction-induced hazards in Japan's 2011 Tōhoku earthquake confirms its correctness and reliability compared with the liquefaction potential index approach. The proposed BN model can also predict whether the soil becomes liquefied after an earthquake and can deduce the chain reaction process of liquefaction-induced hazards and perform backward reasoning. The assessment results from the proposed model provide informative guidelines for decision-makers to detect the damage state of a field following liquefaction.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference52 articles.

1. Bardet, J. P. and Kapuskar, M.: Liquefaction sand boils in San Francisco during 1989 Loma Prieta earthquake, J. Geotech. Eng., 119, 543–562, 1993.

2. Bartlett, S. F. and Youd, T. L.: Empirical prediction of liquefaction-induce lateral spread, J. Geotech. Eng., 121, 316–329, 1995.

3. Bayraktarli, Y. Y.: Application of Bayesian probabilistic networks for liquefaction of soil, 6th International PhD Symposium in Civil Engineering, 23–26 August 2006, Zurich, Switzerland, 2006.

4. Bayraktarli, Y. Y. and Faber, M. H.: Bayesian probabilistic network approach for managing earthquake risks of cities, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 5, 2–24, 2011.

5. Bayraktarli, Y. Y., Ulfkjaer, J. P., Yazgan, U., and Faber, M. H.: On the Application of Bayesian Probabilistic Networks for Earthquake risk management. Proceedings of the Ninth International Conference on Structural Safety and Reliability (ICOSSAR 05), 20–23 June 2005, Rome, Italy, 2005.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3