Growth of a sinkhole in a seismic zone of the northern Apennines (Italy)

Author:

La Rosa AlessandroORCID,Pagli CarolinaORCID,Molli Giancarlo,Casu FrancescoORCID,De Luca Claudio,Pieroni Amerino,D'Amato Avanzi Giacomo

Abstract

Abstract. Sinkhole collapse is a major hazard causing substantial social and economic losses. However, the surface deformations and sinkhole evolution are rarely recorded, as these sites are known mainly after a collapse, making the assessment of sinkhole-related hazard challenging. Furthermore, more than 40 % of the sinkholes of Italy are in seismically hazardous zones; it remains unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary data set of InSAR, surface mapping and historical records of sinkhole activity to show that the Prà di Lama lake is a long-lived sinkhole that was formed in an active fault zone and grew through several events of unrest characterized by episodic subsidence and lake-level changes. Moreover, InSAR shows that continuous aseismic subsidence at rates of up to 7.1 mm yr−1 occurred during 2003–2008, between events of unrest. Earthquakes on the major faults near the sinkhole do not trigger sinkhole activity but low-magnitude earthquakes at 4–12 km depth occurred during sinkhole unrest in 1996 and 2016. We interpret our observations as evidence of seismic creep at depth causing fracturing and ultimately leading to the formation and growth of the Prà di Lama sinkhole.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference74 articles.

1. Abelson, M., Aksinenko, T., Kurzon, I., Pinsky, V., Baer, G., Nof, R., and Yechieli, Y.: Nanoseismicity forecast sinkhole collapse in the Dead Sea coast years in advance, Geology, 46, 83–86, https://doi.org/10.1130/G39579.1, 2017.

2. Amelung, F., Galloway, D. L., Bell, J. W., Zebker, H. A., and Laczniak, R. J.: Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation, Geology, 27, 483–486, https://doi.org/10.1130/0091-7613(1999)027<0483:STUADO>2.3.CO;2, 1999.

3. Atzori, S., Baer, G., Antonioli, A., and Salvi, S.: InSAR-based modelling and analysis of sinkholes along the Dead Sea coastline, Geophys. Res. Lett., 42, 8383–8390. https://doi.org/10.1002/2015GL066053, 2015.

4. Baer, G., Schattner, U., Wachs D., Sandwell, D., Wdowinski, S., and Frydman, S.: The lowest place on Earth is subsiding – An InSAR (Interferomeric Synthetic Aperture Radar) Perspective, Geol. Soc. Am. Bull., 114, 12–23, https://doi.org/10.1130/0016-7606(2002)114<0012:TLPOEI>2.0.CO;2, 2002.

5. Baldacci, F., Botti, F., Cioni, R., Molli, G., Pierotti, L., Scozzari, A., and Vaselli, L.: Geological-structural and hydrogeochemical studies to identify sismically active structures: case history from the Equi Terme-Monzone hydrothermal system (Northern Apennine – Italy), Geoitalia, 6th Italian Forum of Earth Sciences, 12–14 September 2007, Rimini, Italy, 2007.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3