Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data
-
Published:2018-03-05
Issue:3
Volume:18
Page:709-727
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Chang Kuo-JenORCID, Chan Yu-ChangORCID, Chen Rou-Fei, Hsieh Yu-ChungORCID
Abstract
Abstract. Several remote sensing techniques, namely traditional aerial photographs, an unmanned aircraft system (UAS), and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence and potential hazard. A morphological reconstruction method was proposed to assess landslide morphology based on the dome-shaped topography of the volcanic edifice and the nature of its morphological evolution. Two large-scale landslides in the Tatun volcano group in northern Taiwan were targeted to more accurately characterize the landslide morphology through airborne lidar and UAS-derived digital terrain models and images. With the proposed reconstruction method, the depleted volume of the two landslides was estimated to be at least 820 ± 20 × 106 m3. Normal faulting in the region likely played a role in triggering the two landslides, because there are extensive geological and historical records of an active normal fault in this region. The subsequent geomorphological evolution of the two landslides is thus inferred to account for the observed morphological and tectonic features that are indicative of resulting in large and life-threatening landslides, as characterized using the recent remote sensing techniques.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference58 articles.
1. Ambrosi, C. and Crosta, G. B.: Large sackung along major tectonic features in the Central Italian Alps, Eng. Geol., 83, 183–200, 2006. 2. Bucci, F., Cardinali, M., and Guzzetti, F.: Structural geomorphology, active faulting and slope deformations in the epicentre area of the MW 7.0, 1857, Southern Italy earthquake, Phys. Chem. Earth., 63, 12–24, 2013. 3. Bucci, F., Santangelo, M., Cardinali, M., Fiorucci, F., and Guzzetti, F.: Landslide distribution and size in response to Quaternary fault activity: the Peloritani Range, NE Sicily, Italy, Earth. Surf. Proc. Land., 41, 711–720, https://doi.org/10.1002/esp.3898, 2016. 4. Bühler, Y., Adams, M. S., Bösch, R., and Stoffel, A.: Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): potential and limitations, The Cryosphere, 10, 1075–1088, https://doi.org/10.5194/tc-10-1075-2016, 2016. 5. Chan, Y. C., Chang, K. J., Chen, R. F., and Liu, J. K.: Topographic changes revealed by airborne LiDAR surveys in regions affected by the 2009 Typhoon Morakot, southern Taiwan, Western Pacific Earth Sciences, 12, 67–82, 2012.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|