Active faults sources for the Pátzcuaro–Acambay fault system (Mexico): fractal analysis of slip rates and magnitudes <i>M</i><sub>w</sub> estimated from fault length

Author:

Mendoza-Ponce Avith,Figueroa-Soto Angel,Soria-Caballero Diana,Garduño-Monroy Víctor Hugo

Abstract

Abstract. The Pátzcuaro–Acambay fault system (PAFS), located in the central part of the Trans-Mexican Volcanic Belt (TMVB), is delimited by an active transtensive deformation area associated with the oblique subduction zone between the Cocos and North American plates, with a convergence speed of 55 mm yr−1 at the latitude of the state of Michoacán, Mexico. Part of the oblique convergence is transferred to this fault system, where the slip rates range from 0.009 to 2.78 mm yr−1. This has caused historic earthquakes in Central Mexico, such as the Acambay quake (Ms=6.9) on 19 November 1912 with surface rupture, and another in Maravatío in 1979 with Ms=5.6. Also, paleoseismic analyses are showing Quaternary movements in some faults, with moderate to large magnitudes. Notably, this zone is seismically active, but lacks a dense local seismic network, and more importantly, its neotectonic movements have received very little attention. The present research encompasses three investigations carried out in the PAFS. First, the estimation of the maximum possible earthquake magnitudes, based on 316 fault lengths mapped on a 15 m digital elevation model, by means of three empirical relationships. In addition, the Hurst exponent Hw and its persistence, estimated for magnitudes Mw (spatial domain) and for 32 slip-rate data (time domain) by the wavelet variance analysis. Finally, the validity of the intrinsic definition of active fault proposed here. The average results for the estimation of the maximum and minimum magnitudes expected for this fault population are 5.5≤Mw≤7. Also, supported by the results of H at the spatial domain, this paper strongly suggests that the PAFS is classified in three different zones (western PAFS, central PAFS, and eastern PAFS) in terms of their roughness (Hw=0.7,Hw=0.5,Hw=0.8 respectively), showing different dynamics in seismotectonic activity and; the time domain, with a strong persistence Hw=0.949, suggests that the periodicities of slip rates are close in time (process with memory). The fractal capacity dimension (Db) is also estimated for the slip-rate series using the box-counting method. Inverse correlation between Db and low slip-rate concentration was observed. The resulting Db=1.86 is related to a lesser concentration of low slip-rates in the PAFS, suggesting that larger faults accommodate the strain more efficiently (length ≥3 km). Thus, in terms of fractal analysis, we can conclude that these 316 faults are seismically active, because they fulfill the intrinsic definition of active faults for the PAFS.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3