The effect of hydroxyl functional groups and molar mass on the viscosity of non-crystalline organic and organic–water particles
-
Published:2017-07-13
Issue:13
Volume:17
Page:8509-8524
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Grayson James W., Evoy ErinORCID, Song Mijung, Chu YangxiORCID, Maclean Adrian, Nguyen Allena, Upshur Mary Alice, Ebrahimi Marzieh, Chan Chak K.ORCID, Geiger Franz M., Thomson Regan J.ORCID, Bertram Allan K.ORCID
Abstract
Abstract. The viscosities of three polyols and three saccharides, all in the non-crystalline state, have been studied. Two of the polyols (2-methyl-1,4-butanediol and 1,2,3-butanetriol) were studied under dry conditions, the third (1,2,3,4-butanetetrol) was studied as a function of relative humidity (RH), including under dry conditions, and the saccharides (glucose, raffinose, and maltohexaose) were studied as a function of RH. The mean viscosities of the polyols under dry conditions range from 1.5 × 10−1 to 3.7 × 101 Pa s, with the highest viscosity being that of the tetrol. Using a combination of data determined experimentally here and literature data for alkanes, alcohols, and polyols with a C3 to C6 carbon backbone, we show (1) there is a near-linear relationship between log10 (viscosity) and the number of hydroxyl groups in the molecule, (2) that on average the addition of one OH group increases the viscosity by a factor of approximately 22 to 45, (3) the sensitivity of viscosity to the addition of one OH group is not a strong function of the number of OH functional groups already present in the molecule up to three OH groups, and (4) higher sensitivities are observed when the molecule has more than three OH groups. Viscosities reported here for 1,2,3,4-butanetetrol particles are lower than previously reported measurements using aerosol optical tweezers, and additional studies are required to resolve these discrepancies. For saccharide particles at 30 % RH, viscosity increases by approximately 2–5 orders of magnitude as molar mass increases from 180 to 342 g mol−1, and at 80 % RH, viscosity increases by approximately 4–5 orders of magnitude as molar mass increases from 180 to 991 g mol−1. These results suggest oligomerization of highly oxidized compounds in atmospheric secondary organic aerosol (SOA) could lead to large increases in viscosity, and may be at least partially responsible for the high viscosities observed in some SOA. Finally, two quantitative structure–property relationship models (Sastri and Rao, 1992; Marrero-Morejón and Pardillo-Fontdevila, 2000) were used to predict the viscosity of alkanes, alcohols, and polyols with a C3–C6 carbon backbone. Both models show reasonably good agreement with measured viscosities for the alkanes, alcohols, and polyols studied here except for the case of a hexol, the viscosity of which is underpredicted by 1–3 orders of magnitude by each of the models.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference102 articles.
1. Achard, C., Dussap, C. G., and Gros, J.-B.: Prédiction de l'activité de l'eau, des températures d'ébullition et de congélation de solutions aqueuses de sucres par un modèle UNIFAC, Ind. Aliment. Agric., 109, 93–101, 1992. 2. Baltensperger, U., Kalberer, M., Dommen, J., Paulsen, D., Alfarra, M. R., Coe, H., Fisseha, R., Gascho, A., Gysel, M., Nyeki, S., Sax, M., Steinbacher, M., Prevot, A. S. H., Sjögren, S., Weingartner, E., and Zenobi, R.: Secondary organic aerosols from anthropogenic and biogenic precursors, Faraday Discuss., 130, 265–278, https://doi.org/10.1039/b417367h, 2005. 3. Baltensperger, U., Dommen, J., Alfarra, M. R., Duplissy, J., Gaeggler, K., Metzger, A., Facchini, M. C., Decesari, S., Finessi, E., Reinnig, C., Schott, M., Warnke, J., Hoffmann, T., Klatzer, B., Puxbaum, H., Geiser, M., Savi, M., Lang, D., Kalberer, M., and Geiser, T.: Combined determination of the chemical composition and of health effects of secondary organic aerosols: The POLYSOA project, J. Aerosol Med. Pulm. Deliv., 21, 145–154, https://doi.org/10.1089/jamp.2007.0655, 2008. 4. Barbosa-Canovas, G. V.: Water activity in foods: Fundamentals and applications, Wiley-Blackwell, Hoboken, NJ, 2007. 5. Baudry, J., Charlaix, E., Tonck, A., and Mazuyer, D.: Experimental evidence for a large slip effect at a nonwetting fluid-solid interface, Langmuir, 17, 5232–5236, https://doi.org/10.1021/la0009994, 2001.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|