Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)

Author:

Zender Charles S.ORCID

Abstract

Abstract. Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25–80 and 5–65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1–5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1–2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that it can compress, Bit Grooming guarantees the specified precision throughout the full floating-point range. Data quantization by Bit Grooming is irreversible (i.e., lossy) yet transparent, meaning that no extra processing is required by data users/readers. Hence Bit Grooming can easily reduce data storage volume without sacrificing scientific precision or imposing extra burdens on users.

Funder

National Aeronautics and Space Administration

U.S. Department of Energy

Publisher

Copernicus GmbH

Reference28 articles.

1. Burtscher, M. and Ratanaworabhan, P.: FPC: A high-speed compressor for double-precision floating-point data, IEEE T. Comput., 58, 18–31, https://doi.org/10.1109/TC.2008.131, 2009.

2. Caron, J.: Compression by scaling and offset, available at: http://www.unidata.ucar.edu/blogs/developer/entry/compression_by_scaling_and_offfset (last access: 13 September 2016), 2014a.

3. Caron, J.: Compression by bit shaving, available at: http://www.unidata.ucar.edu/blogs/developer/entry/compression_by_bit_shaving (last access: 13 September 2016), 2014b.

4. Collet, Y.: LZ4 lossless compression algorithm, available at: http://lz4.org (last access: 13 September 2016), 2013.

5. Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A., St-Cyr, A., Taylor, M. A., and Worley, P. H.: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model, Int. J. High Perform. C., 26, 74–89, https://doi.org/10.1177/1094342011428142, 2012.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifacets of lossy compression for scientific data in the Joint-Laboratory of Extreme Scale Computing;Future Generation Computer Systems;2025-02

2. CliZ: Optimizing Lossy Compression for Climate Datasets with Adaptive Fine-tuned Data Prediction;2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS);2024-05-27

3. A Lightweight, Effective Compressibility Estimation Method for Error-bounded Lossy Compression;2023 IEEE International Conference on Cluster Computing (CLUSTER);2023-10-31

4. Black-box statistical prediction of lossy compression ratios for scientific data;The International Journal of High Performance Computing Applications;2023-06-14

5. Discussion on “Saving Storage in Climate Ensembles: A Model-Based Stochastic Approach”;Journal of Agricultural, Biological and Environmental Statistics;2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3