Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies

Author:

Geer A. J.ORCID,Baordo F.

Abstract

Abstract. To simulate passive microwave radiances in all-sky conditions requires better knowledge of the scattering properties of frozen hydrometeors. Typically, snow particles are represented as spheres and their scattering properties are calculated using Mie theory, but this is unrealistic and, particularly in deep-convective areas, it produces too much scattering in mid-frequencies (e.g. 30–50 GHz) and too little scattering at high frequencies (e.g. 150–183 GHz). These problems make it hard to assimilate microwave observations in numerical weather prediction (NWP) models, particularly in situations where scattering effects are most important, such as over land surfaces or in moisture sounding channels. Using the discrete dipole approximation to compute scattering properties, more accurate results can be generated by modelling frozen particles as ice rosettes or simplified snowflakes, though hexagonal plates and columns often give worse results than Mie spheres. To objectively decide on the best particle shape (and size distribution) this study uses global forecast departures from an NWP system (e.g. observation minus forecast differences) to indicate the quality of agreement between model and observations. It is easy to improve results in one situation but worsen them in others, so a rigorous method is needed: four different statistics are checked; these statistics are required to stay the same or improve in all channels between 10 GHz and 183 GHz and in all weather situations globally. The optimal choice of snow particle shape and size distribution is better across all frequencies and all weather conditions, giving confidence in its physical realism. Compared to the Mie sphere, most of the systematic error is removed and departure statistics are improved by 10 to 60%. However, this improvement is achieved with a simple "one-size-fits-all" shape for snow; there is little additional benefit in choosing the particle shape according to the precipitation type. These developments have improved the accuracy of scattering radiative transfer sufficiently that microwave all-sky assimilation is being extended to land surfaces, to higher frequencies and to sounding channels.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference70 articles.

1. Aires, F., Prigent, C., Bernardo, F., Jiménez, C., Saunders, R., and Brunel, P.: A Tool to Estimate Land-Surface Emissivities at Microwave frequencies (TELSEM) for use in numerical weather prediction, Q. J. Roy. Meteorol. Soc., 137, 690–699, https://doi.org/10.1002/qj.803, 2011.

2. Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for satellite data in a numerical weather prediction system, Q. J. Roy. Meteorol. Soc., 133, 631–642, 2007.

3. Baordo, F., Geer, A. J., and English, S.: SSMI/S radiances over land in the all-sky framework: one year report, EUMETSAT/ECMWF Fellowship Programme Research Report No. 27, available at: http://www.ecmwf.int (last access: 20 June 2014), 2012.

4. Baordo, F., Geer, A. J., and English, S.: All-sky assimilation of SSMI/S humidity sounding channels over land: second year report, EUMETSAT/ECMWF Fellowship Programme Research Report No. 30, available at: http://www.ecmwf.int (last access: 20 June 2014), 2013.

5. Baran, A. and Labonnote, L.-C.: A self-consistent scattering model for cirrus. I: The solar region, Q. J. Roy. Meteorol. Soc., 133, 1899–1912, 2007.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3