Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica
-
Published:2014-12-21
Issue:2
Volume:5
Page:1361-1374
-
ISSN:1869-9529
-
Container-title:Solid Earth
-
language:en
-
Short-container-title:Solid Earth
Author:
Michel R. F. M.,Schaefer C. E. G. R.,Simas F. M. B.,Francelino M. R.,Fernandes-Filho E. I.,Lyra G. B.,Bockheim J. G.
Abstract
Abstract. International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008–2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.
Publisher
Copernicus GmbH
Subject
Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science
Reference30 articles.
1. Beyer, L., Bockheim, J. G., Campbell, I. B., and Claridge, G. G. C.: Genesis, properties and sensitivity of Antarctic Gelisols, Ant. Sci., 11, 387–398, 1999. 2. Bockheim, J. and Mcleod, M.: Soil distribution in the McMurdo Dry Valleys, Antarctica, Geoderma, 144, 43–49, 2008. 3. Bockheim, J. G.: Permafrost distribution in the Southern Circumpolar region and its Relation to the Environment: a Review and Recommendations for Further Research, Permafr. Perigl. Proc., 6, 27–45, 1995. 4. Burnham, K. P. and Anderson, D. R.: Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, 2nd Edn., New York, Springer-Verlag, 2002. 5. De Pablo, M. A., Blanco, J. J., Molina, A., Ramos, M., Quesada, A., and Vieira, G.: Interannual active layer variability at the Limnopolar Lake CALM site, Byers Peninsula, Livingston Island, Antarctica, Ant. Sci., 25, 197–180, 2013.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|