Hydrogen isotope fractionation affects the identification and quantification of tree water sources in a riparian forest

Author:

Barbeta AdriàORCID,Jones Sam P.,Clavé Laura,Wingate LisaORCID,Gimeno Teresa E.ORCID,Fréjaville BastienORCID,Wohl Steve,Ogée JérômeORCID

Abstract

Abstract. We investigated plant-water sources of an emblematic refugial population of Fagus sylvatica (L.) in the Ciron river gorges in South-Western France using stable isotopes. The stable isotopes of water are a powerful tracer of water fluxes in the soil-plant-atmosphere continuum. It is generally assumed that no isotopic fractionation occurs during root water uptake, and that xylem water isotopes effectively reflect source water isotopes. However, recent studies showed that under certain conditions the isotopes in plant water do not reflect any of the potential sources considered. Highly resolved datasets covering a range of environmental conditions could shed light on possible plant-soil fractionations processes. In this study, the hydrogen (δ2H) and oxygen (δ18O) isotope compositions of all potential tree water sources and xylem water were measured bi-weekly over an entire growing season. Using Bayesian isotope mixing models (MixSIAR), we then quantified the contribution of the considered sources to xylem water of F. sylvatica and Quercus robur (L.) trees. Based on δ18O data alone, both species used a mix of top and deep soil water over the season, with Q. robur using soil water relatively deeper than F. sylvatica. The contribution of stream water appeared to be marginal despite the proximity of the trees to the stream, as already reported for other riparian forests. Xylem water δ18O could always be interpreted as a mixture of deep and shallow soil waters, but the δ2H of xylem water was often more depleted than any other possible water source. We argue that an isotopic fractionation in the unsaturated zone and/or within the plant tissues could underlie this unexpected δ2H depletion of xylem water, as already observed in halophytic and xerophytic species. By means of a sensitivity analysis, we found that the estimation of plant-water sources using isotope mixing models was largely affected by this isotopic δ2H depletion. A better understanding of what causes this isotopic separation between xylem and source water is urgently needed.

Funder

Université de Bordeaux

Agence Nationale de la Recherche

European Research Council

Publisher

Copernicus GmbH

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A process‐based water stable isotope mixing model for plant water sourcing;Ecohydrology;2024-01

2. Be Consistent, Work the Program, Be Present Every Day;Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies;2021-12-27

3. Epikarst shallow fissure soil systems are key to eliminating karst drought limitations in the karst rocky desertification area of SW China;Ecohydrology;2021-11-04

4. Water sources for red maple trees in a northern hardwood forest under a changing climate;Ecohydrology;2020-09-04

5. Design for Co-responsibility;Proceedings of the 2020 ACM Designing Interactive Systems Conference;2020-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3