Evaluating the value of a network of cosmic-ray probes for improving land surface modelling

Author:

Baatz R.,Hendricks Franssen Harrie-Jan,Han XujunORCID,Hoar TimORCID,Bogena Heye R.ORCID,Vereecken HarryORCID

Abstract

Abstract. Land surface models can model matter and energy fluxes between the land surface and atmosphere, and provide a lower boundary condition to atmospheric circulation models. For these applications, accurate soil moisture quantification is highly desirable but not always possible given limited observations and limited subsurface data accuracy. Cosmic-ray probes (CRPs) offer an interesting alternative to indirectly measure soil moisture and provide an observation that can be assimilated into land surface models for improved soil moisture prediction. Synthetic studies have shown the potential to estimate subsurface parameters of land surface models with the assimilation of CRP observations. In this study, the potential of a network of CRPs for estimating subsurface parameters and improved soil moisture states is tested in a real-world case scenario using the local ensemble transform Kalman filter with the Community Land Model. The potential of the CRP network was tested by assimilating CRP-data for the years 2011 and 2012 (with or without soil hydraulic parameter estimation), followed by the verification year 2013. This was done using (i) the regional soil map as input information for the simulations, and (ii) an erroneous, biased soil map. For the regional soil map, soil moisture characterization was only improved in the assimilation period but not in the verification period. For the biased soil map, soil moisture characterization improved in both periods strongly from a ERMS of 0.11 cm3/cm3 to 0.03 cm3/cm3 (assimilation period) and from 0.12 cm3/cm3 to 0.05 cm3/cm3 (verification period) and the estimated soil hydraulic parameters were after assimilation closer to the ones of the regional soil map. Finally, the value of the CRP network was also evaluated with jackknifing data assimilation experiments. It was found that the CRP network is able to improve soil moisture estimates at locations between the assimilation sites from a ERMS of 0.12 cm3/cm3 to 0.06 cm3/cm3 (verification period), but again only if the initial soil map was biased.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3