Climate change alters low flows in Europe under a 1.5, 2, and 3 degree global warming

Author:

Marx Andreas,Kumar RohiniORCID,Thober StephanORCID,Zink MatthiasORCID,Wanders NikoORCID,Wood Eric F.ORCID,Ming PanORCID,Sheffield JustinORCID,Samaniego LuisORCID

Abstract

Abstract. There is growing evidence that climate change will alter water availability in Europe. Here, we investigate how hydrological low flows are affected under different levels of future global warming (i.e., 1.5, 2 and 3 K). The analysis is based on a multi-model ensemble of 45 hydrological simulations based on three RCPs (rcp2p6, rcp6p0, rcp8p5), five CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) and three state-of-the-art hydrological models (HMs: mHM, Noah-MP, and PCR-GLOBWB). High resolution model results are available at the unprecedented spatial resolution of 5 km across the pan-European domain at daily temporal resolution. Low river flow is described as the percentile of daily streamflow that is exceeded 90 % of the time. It is determined separately for each GCM/HM combinations and the warming scenarios. The results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean while they increase in the Alpine and Northern regions. In the Mediterranean, the level of warming amplifies the signal from −12 % under 1.5 K to −35 % under 3 K global warming largely due to the projected decreases in annual precipitation. In contrast, the signal is amplified from +22 % (1.5 K) to +45 % (3 K) in the Alpine region because of the reduced snow melt contribution. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Nevertheless, it is not possible to distinguish climate induced differences in low flows between 1.5 and 2 K warming because of the large variability inherent in the multi-model ensemble. The contribution by the GCMs to the uncertainty in the model results is generally higher than the one by the HMs. However, the uncertainty due to HMs cannot be neglected. In the Alpine and Northern region as well as the Mediterranean, the uncertainty contribution by the HMs is partly higher than those by the GCMs due to different representations of processes such as snow, soil moisture and evapotranspiration.

Funder

Bundesministerium für Bildung und Forschung

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3