The significance of soil properties to the estimation of soil moisture from C-band synthetic aperture radar

Author:

Beale JohnORCID,Snapir Boris,Waine Toby,Evans Jonathan,Corstanje Ronald

Abstract

Abstract. Soil Moisture is a key variable in hydrology, weather and climate modelling. Research has been directed to the estimation of soil moisture over wide areas through a combination of modelling, in-situ measurement and remote sensing to improve the accuracy of hydrological and meteorological forecasting. For monitoring and controlling irrigation and other agricultural purposes, there is also a need to capture local variability. Significant soil moisture differences are observed between and within fields due to land use, soil properties, drainage, tillage, vegetation, solar radiation, air temperature, wind, rain and other factors. Taking the United Kingdom as an example, the average area of agricultural fields is about 12 hectares, requiring a mapping resolution of less than 100 m. Satellite-based remote sensing, including the use of C-band SAR (such as on Sentinel-1), has the potential to satisfy this requirement, but many current data products are aggregated to a spatial resolution of at least 1km and/or provide soil moisture in relative units or indices. Both strategies mitigate the uncertainties introduced by field-scale variability in soil hydrological and vegetation properties. Geospatial datasets of soil properties and land use, crop modelling and other remote sensing techniques may provide an alternative approach to mitigating this variability and allow finer scale products to be produced with acceptable errors. This paper looks at the role of soil properties in the estimation of soil moisture from C-band SAR. We show that information on the soil texture, organic matter content, surface temperature, land use and crop modelling should be important inputs to the success of retrieving soil moisture at the field scale. Previously published data provides guidance in setting soil roughness parameters, based on soil properties, following farming operations such as primary tillage. Beyond soil moisture retrieval, there is exciting potential in SAR remote sensing data to improve the spatial resolution and mapping accuracy of some soil properties.

Funder

Natural Environment Research Council

Biotechnology and Biological Sciences Research Council

Publisher

Copernicus GmbH

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3