Long-term projections of global water use for electricity generation under the Shared Socioeconomic Pathways and climate mitigation scenarios

Author:

Ando Nozomi,Yoshikawa SayakaORCID,Fujimori Shinichiro,Kanae Shinjiro

Abstract

Abstract. Electricity generation may become a key factor that accelerates water scarcity. In this study, we estimated the future global water use for electricity generation from 2005 to 2100 in 17 global sub-regions. Twenty-two future global change scenarios were examined, consisting of feasible combinations of five socioeconomic scenarios of the Shared Socioeconomic Pathways (SSPs) and six climate mitigation scenarios based on four forcing levels of representative concentration pathways (RCPs) and two additional forcing levels, to assess the impacts of socioeconomic and climate mitigation changes on water withdrawal and consumption for electricity generation. Climate policies such as targets of greenhouse gas (GHG) emissions are determined by climate mitigation scenarios. Both water withdrawal and consumption were calculated by multiplying the electricity generation of each energy source (e.g., coal, nuclear, biomass, and solar power) and the energy source-specific water use intensity. The future electricity generation dataset was derived from the Asia-Pacific Integrated/Computable General Equilibrium (AIM/CGE) model. Estimated water withdrawal and consumption varied significantly among the SSPs. In contrast, water withdrawal and consumption differed little among the climate mitigation scenarios even though GHG emissions depend on them. There are two explanations for these outcomes. First, electricity generation for energy sources requiring considerable amounts of water varied widely among the SSPs, while it did not differ substantially among the climate mitigation scenarios. Second, the introduction of more carbon capture and storage strategies increased water withdrawal and consumption under stronger mitigation scenarios, while the introduction of more renewable energy decreased water withdrawal and consumption. Therefore, the socioeconomic changes represented by the SSPs had a larger impact on water withdrawal and consumption for electricity generation, compared with the climate mitigation changes represented by the climate mitigation scenarios. The same trends were observed on a regional scale, even though the composition of energy sources differed completely from that on a global scale.

Publisher

Copernicus GmbH

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3