Technical note: The Weibull distribution as an extreme value alternative for annual maxima

Author:

Bardsley Earl

Abstract

Abstract. The generalized extreme value distribution (GEV) for largest extremes is widely applied to single-site annual maxima sequences for estimating exceedance probabilities for application to design magnitudes under conditions of stationarity. However, the GEV is not the only mode for application of classical extreme value theory to recorded maxima. An alternative approach is to apply specific transformations to the maxima, enabling different but equivalent exceedance statements. For example, the probability that annual flood maxima will exceed some magnitude e is the same as the probability that reciprocals of the maxima will be less than 1/ε. The transformed maxima considered here represent sample minima, where the sample is the number of transformed independent individual events per year. For sufficiently large sample sizes, this leads to just one of the extreme value distributions for design purposes – the Weibull distribution for minima. This extreme value distribution arises because it is the limit stable expression for describing distributions of large-sample minima when a lower bound is present. There is no way of telling whether a good Weibull fit to transformed annual maxima indicates that sample sizes are sufficiently large for the Weibull extreme value approximation to apply. It could happen that a good fit is simply a fortuitous empirical matching to data from transformation selection. However, a similar issue also applies to the GEV which is itself a flexible distribution capable of empirical matching to data. It is not possible to make a case for the Weibull distribution by application to a range of annual maxima because any number of different transformations might be applied to achieve good Weibull fits. Instead, two simple synthetic examples are used to illustrate how a good fit to annual maxima by the GEV could lead to an incorrect conclusion, in contrast to the Weibull approximation applied to the same examples.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3