A new automatic method for estimating the peak auroral emission height from all-sky camera images
Author:
Whiter D. K.,Gustavsson B.,Partamies N.,Sangalli L.
Abstract
Abstract. This paper presents a new fully automatic method for quickly finding the average peak emission height of an auroral structure from a pair of all-sky camera images with overlapping fields of view. The peak emission height of the aurora must be estimated in order to calculate several other important parameters, such as horizontal spatial scales, optical flow velocities, and ionospheric electric fields. In most cases the height is not measured, but a value is assumed, often about 110 km. It is unclear how accurate this assumption is. A future statistical study of the auroral height in which the method presented here will be applied to many years of observations will lead to more accurate assumptions of the height with quantitative error estimates, and therefore more accurate estimates of parameters derived using these assumed auroral heights. In the present work the performance of the new method is compared to another recent automatic method. It is found that the new method is more suitable for a statistical study, although it would be advantageous to apply both methods to each pair of images. On average the new method produces the correct result, unlike the other recent method, but the new method is less consistent.
Publisher
Copernicus GmbH
Reference33 articles.
1. Ashrafi, M., Kosch, M. J., and Kaila, K.: Height triangulation of artificial optical emissions in the F-layer, in: Proceedings of the 31st Annual European Meeting on Atmospheric Studies by Optical Methods, and 1st International Riometer Workshop, 22–28 August 2004, Ambleside, United Kingdom, 8–16, available at: http://spears.lancs.ac.uk/publications/31am_proceedings.pdf, 2005. 2. Aso, T., Ejiri, M., Urashima, A., Miyaoka, H., Steen, Å., Br{ä}ndstr{ö}m, U., and Gustavsson, B.: First results of auroral tomography from {ALIS-J}apan multi-station observations in {M}arch, 1995, Earth Planets Space, 50, 81–86, 1998. 3. Boyd, J. S., Belon, A. E., and Romick, G. J.: Latitude and Time Variations in Precipitated Electron Energy Inferred from Measurements of Auroral Heights, J. Geophys. Res., 76, 7694–7700, 1971. 4. Brandy, J. H. and Hill, J. E.: Rapid Determination of Auroral Heights, Can. J. Phys., 42, 1813–1819, https://doi.org/10.1139/p64-165, 1964. 5. Dahlgren, H., Ivchenko, N., Lanchester, B., Ashrafi, M., Whiter, D., Marklund, G., and Sullivan, J.: First direct optical observations of plasma flows using afterglow of {O}+ in discrete aurora, J. Atmos. Sol. Terr. Phys., 71, 228–238, https://doi.org/10.1016/j.jastp.2008.11.015, 2009.
|
|