New method in computer simulations of electron and ion densities and temperatures in the plasmasphere and low-latitude ionosphere

Author:

Pavlov A. V.

Abstract

Abstract. A new theoretical model of the Earth’s low- and mid-latitude ionosphere and plasmasphere has been developed. The new model uses a new method in ionospheric and plasmaspheric simulations which is a combination of the Eulerian and Lagrangian approaches in model simulations. The electron and ion continuity and energy equations are solved in a Lagrangian frame of reference which moves with an individual parcel of plasma with the local plasma drift velocity perpendicular to the magnetic and electric fields. As a result, only the time-dependent, one-dimension electron and ion continuity and energy equations are solved in this Lagrangian frame of reference. The new method makes use of an Eulerian computational grid which is fixed in space co-ordinates and chooses the set of the plasma parcels at every time step, so that all the plasma parcels arrive at points which are located between grid lines of the regularly spaced Eulerian computational grid at the next time step. The solution values of electron and ion densities Ne and Ni and temperatures Te and Ti at the Eulerian computational grid are obtained by interpolation. Equations which determine the trajectory of the ionospheric plasma perpendicular to magnetic field lines and take into account that magnetic field lines are "frozen" in the ionospheric plasma are derived and included in the new model. We have presented a comparison between the modeled NmF2 and hmF2 and NmF2 and hmF2 which were observed at the anomaly crest and close to the geomagnetic equator simultaneously by the Huancayo, Chiclayo, Talara, Bogota, Panama, and Puerto Rico ionospheric sounders during the 7 October 1957 geomagnetically quiet time period at solar maximum. The model calculations show that there is a need to revise the model local time dependence of the equatorial upward E × B drift velocity given by Scherliess and Fejer (1999) at solar maximum during quiet daytime equinox conditions. Uncertainties in the calculated Ni , Ne , Te , and Ti resulting from the difference between the NRLMSISE-00 and MSIS-86 neutral temperatures and densities and from the difference between the EUV97 and EUVAC solar fluxes are evaluated. The decrease in the NRLMSISE-00 model [O]/[N2] ratio by a factor of 1.7–2.1 from 16:12 UT to 23:12 UT on 7 October brings the modeled and measured NmF2 and hmF2 into satisfactory agreement. It is shown that the daytime peak values in Te , and Ti above the ionosonde stations result from the daytime peak in the neutral temperature. Our calculations show that the value of Te at F2-region altitudes becomes almost independent of the electron heat flow along the magnetic field line above the Huancayo, Chiclayo, and Talara ionosonde stations, because the near-horizontal magnetic field inhibits the heat flow of electrons. The increase in geomagnetic latitude leads to the increase in the effects of the electron heat flow along the magnetic field line on Te . It is found that at sunrise, there is a rapid heating of the ambient electrons by photoelectrons and the difference between the electron and neutral temperatures could be increased because nighttime electron densities are less than those by day, and the electron cooling during morning conditions is less than that by day. This expands the altitude region at which the ion temperature is less than the electron temperature near the equator and leads to the sunrise electron temperature peaks at hmF2 altitudes above the ionosonde stations. After the abrupt increase at sunrise, the value of Te decreases, owing to the increasing electron density due to the increase in the cooling rate of thermal electrons and due to the decrease in the relative role of the electron heat flow along the magnetic field line in comparison with cooling of thermal electrons. These physical processes lead to the creation of sunrise electron temperature peaks which are calculated above the ionosonde stations at hmF2 altitudes. We found that the main cooling rates of thermal electrons are electron-ion Coulomb collisions, vibrational excitation of N2 and O2, and rotational excitation of N2. It is shown that the increase in the loss rate of O+(4S) ions due to the vibrational excited N2 and O2 leads to the decrease in the calculated NmF2 by a factor of 1.06–1.44 and to the increase in the calculated hmF2, up to the maximum value of 32 km in the low-latitude ionosphere between –30 and +30° of the geomagnetic latitude. Inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement.Key words. Ionosphere (equatorial ionosphere; electric fields and currents, plasma temperature and density; ion chemistry and composition; ionosphere-atmosphere interactions; modeling and forecasting)

Publisher

Copernicus GmbH

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3