Towards conditioning discrete fracture network models: a Monte Carlo simulation approach including existing site data

Author:

Gärtner Christoph G.,Fischer-Appelt Klaus,Charlier Frank

Abstract

Abstract. Crystalline rocks are inherently more or less densely permeated by fractures at very different scales. They often represent the hydraulically dominant flow paths compared to the low-permeable matrix. Consequently, finding potential sites for high-level waste repositories in crystalline host rock is challenging. Fracture inter-connectivity significantly affects geomechanical integrity and radionuclide transport (Mönig et al., 2020). Hence, an accurate representation of the present-day fracture system is a prerequisite for describing future evolutions of a repository. However, information on fracture properties is spatially limited. This shows the necessity of combining existing fracture data and stochastic fracture network modelling. In this manner, spaces with a lack of information can be considered for modelling (Lei et al., 2017). In Mrugalla et al. (2020), generic geological models based on statistical parameters were used to test the methodology for a safety analysis in crystalline rock within the scope of the CHRISTA II project. By using representative outcrop data, discrete fracture network (DFN) models of 2D fractures were generated stochastically, upscaled, and mapped onto a finite-element grid. However, individual stochastic fracture network realizations seldom accurately represent geological reality. Additionally, data from existing fractures must be incorporated. This work aims to understand the uncertainties regarding the location, extent, and other geometrical properties of fractures such as the aperture governing flow patterns. The statistical distributions of these parameters can exhibit significant variations both laterally and depth-wise. Uncertainties are addressed by superimposing a large set of fracture network realizations. For this purpose, Monte Carlo methods are applied to derive a best-guess fracture network. An approximation of the real fracture system will require consideration of known fracture data (e.g. Dorn et al., 2013) from surface and subsequent underground explorations. Site-specific data will be used for demonstration purposes. The focus is on developing a holistic model based on the DFN model and its congruence with field observations. The methodological treatment of underlying data-collection methods, given their different resolutions, accuracies, and restrictions, will be an important aspect. Moreover, the implications of the effects on three-dimensional radionuclide transport will be exemplarily investigated in the generated model in the sense of what-if scenarios. This is done with special emphasis on matrix–fracture diffusion and adsorption as possible retention mechanisms and parameter sensitivities such as local aperture changes.

Publisher

Copernicus GmbH

Reference4 articles.

1. Dorn, C., Linde, N., Le Borgne, T., Bour, O., and de Dreuzy, J.-R.: Conditioning of stochastic 3-D fracture networks to hydrological and geophysical data, Adv. Water Res., 62, 79–89, https://doi.org/10.1016/j.advwatres.2013.10.005, 2013.

2. Lei, Q., Latham, J.-P., and Tsang, C.-F.: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks, Comput. Geotech., 85, 151–176, https://doi.org/10.1016/j.compgeo.2016.12.024, 2017.

3. Mönig, J., Bertrams, N., Bollingerfehr, W., Fahland, S., Frenzel, B., and Maßmann, J.: RESUS – Empfehlungen zur sicherheitsgerichteten Anwendung der geowissenschaftlichen Abwägungskriterien des StandAG: Synthesebericht, Gesellschaft für Anlagen- und Reaktorsicherheit, Köln, Garching b. München, Berlin, Braunschweig, GRS, GRS-567, ISBN 978-3-947685-53-0, 171, 2020.

4. Mrugalla, S., Frenzel, B., Krumbholz, M., Sönnke, J., Stark, L., and Weitkamp, A.: CHRISTA-II: Beschreibung der generischen geologischen Modelle für die Endlagersysteme “multipler ewG” und “mKBS-3”, Ergebnisbericht, BGR (Bundesanstalt für Geowissenschaften und Rohstoffe), Hannover, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3