Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model

Author:

de Baar Jouke H. S.,Garcia-Marti Irene,van der Schrier GerardORCID

Abstract

Abstract. High-resolution weather maps are fundamental components of early warning systems, since they enable the (near) real-time tracking of extreme weather events. In this context, crowd-sourced weather networks producing low-fidelity observations are often the only type of data available at local (e.g. neighborhood) scales. In this work, we demonstrate that we can provide such maps by combining high-fidelity official weather data with low-fidelity crowd-sourced weather data and high-resolution covariate information. Because the crowd-sourced data contains significant bias and noise, we develop an approach to include a bias budget and noise budget in the multi-fidelity Bayesian spatial data analysis. The weights of the different components of these bias and noise budgets are tuned to the data set. We apply this approach to 24 hours of weather data in the Netherlands, for a day that had a “code orange” (i.e. “be prepared for extreme weather with high risk of impact”) weather warning for heavy precipitation. From our analysis, we see a significant – qualitative and quantitative – synergy effect when introducing low-fidelity data and high-resolution covariate information.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Pollution,Geophysics,Ecological Modeling

Reference14 articles.

1. CBS: Geografische data, https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/ (last access: January 2023), 2023. a

2. Crameri, F.: Scientific colour maps, Zenodo [code], https://doi.org/10.5281/zenodo.5501399, 2018.

3. de Baar, J. H. S. and Garcia-Marti, I.: Recent improvements in spatial regression of climate data, in: NATO-AVT-354 workshop on multi-fidelity methods for military vehicle design, 26–28 September 2022, Varna, Bulgaria, https://doi.org/10.13140/RG.2.2.25417.52325, 2022. a, b

4. de Baar, J. H. S. and Garcia-Marti, I.: Dataset associated to the project “Spatial regression of multi-fidelity meteorological observations using a proxy-based measurement error model”, Version 1, 4TU.ResearchData [code and data set], https://doi.org/10.4121/ffa71bf6-b605-4719-acb5-83b733208e4b, 2023. a

5. de Baar, J. H. S., Percin, M., Dwight, R. P., van Oudheusden, B. W., and Bijl, H.: Kriging regression of PIV data using a local error estimate, Exp. Fluids, 55, 1650, https://doi.org/10.1007/s00348-013-1650-z, 2014. a

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-fidelity physics constrained neural networks for dynamical systems;Computer Methods in Applied Mechanics and Engineering;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3