Iterative least squares method for global positioning system

Author:

He Y.,Bilgic A.

Abstract

Abstract. The efficient implementation of positioning algorithms is investigated for Global Positioning System (GPS). In order to do the positioning, the pseudoranges between the receiver and the satellites are required. The most commonly used algorithm for position computation from pseudoranges is non-linear Least Squares (LS) method. Linearization is done to convert the non-linear system of equations into an iterative procedure, which requires the solution of a linear system of equations in each iteration, i.e. linear LS method is applied iteratively. CORDIC-based approximate rotations are used while computing the QR decomposition for solving the LS problem in each iteration. By choosing accuracy of the approximation, e.g. with a chosen number of optimal CORDIC angles per rotation, the LS computation can be simplified. The accuracy of the positioning results is compared for various numbers of required iterations and various approximation accuracies using real GPS data. The results show that very coarse approximations are sufficient for reasonable positioning accuracy. Therefore, the presented method reduces the computational complexity significantly and is highly suited for hardware implementation.

Publisher

Copernicus GmbH

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sensor Cube – A Tool for Hands-on Learning of Sensor Data Processing;IFAC-PapersOnLine;2024

2. An Indoor Positioning Method Based on Quadratic Space Judgment;2023 19th International Conference on Mobility, Sensing and Networking (MSN);2023-12-14

3. Effect of excess ionospheric delay during six major geomagnetic storms on GPS positioning in Indian sector;Acta Geophysica;2023-12-12

4. Characterization of 5G mmWave High-Accuracy Positioning Services for Urban Road Traffic;2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring);2023-06

5. A Physics-informed Latent Variables of Corrosion Growth in Oil and Gas Pipelines;2023 Annual Reliability and Maintainability Symposium (RAMS);2023-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3