Megacity ozone air quality under four alternative future scenarios
-
Published:2012-05-16
Issue:10
Volume:12
Page:4413-4428
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Butler T. M.,Stock Z. S.,Russo M. R.,Denier van der Gon H. A. C.,Lawrence M. G.
Abstract
Abstract. The impact of the megacities of the world on global tropospheric ozone, and conversely, the extent to which megacities are influenced by emissions of ozone precursors from outside of the megacities is examined under the four alternative RCP ("Representative Concentration Pathway") emissions scenarios. Despite accounting for about 6% of present-day anthropogenic emissions of ozone precursor species, the contribution of emissions from megacities to global tropospheric ozone is calculated to be 0.84%. By 2100 this contribution falls to between 0.18% and 0.62% depending on the scenario, with the lower value being for the most-polluting of the four future emissions scenarios due to stringent controls on ozone precursor emissions from highly populated areas combined with a stronger tropospheric background ozone field. The higher end of this range is from the least-polluting of the four emissions scenarios, due to lower background tropospheric ozone combined with the use of a simpler downscaling methodology in the construction of the scenario, which results in higher emissions from megacities. Although the absolute impact of megacities on global ozone is small, an important result of this study is that under all future scenarios, future air quality in megacities is expected to be less influenced by local emissions within the cities, but instead more influenced by emission sources outside of the cities, with mixing ratios of background ozone projected to play an increasing role in megacity air quality throughout the 21st century. Assumptions made when downscaling the emissions scenarios onto the grids used in such modelling studies can have a large influence on these results; future generations of emissions scenarios should include spatially explicit representations or urban development suitable for air quality studies using global chemical transport models.
Funder
European Commission
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference37 articles.
1. Butler, T., Denier van der Gon, H. A. C., and Kuenen, J.: The Base Year (2005) Global Gridded Emission Inventory used in the EU FP7 Project MEGAPOLI (Final Version), MEGAPOLI Scientific Report 11-02, MEGAPOLI-28-REP-2011-01, 2011. 2. Butler, T. M. and Lawrence, M. G.: The influence of megacities on global atmospheric chemistry: a modelling study, Environ. Chem., 6, 219–225, https://doi.org/10.1071/EN08110, 2009. 3. Butler, T. M., Lawrence, M. G., Gurjar, B. R., van Aardenne, J., Schultz, M., and Lelieveld, J.: The representation of emissions from megacities in global emission inventories, Atmos. Environ., 42, 703–716, 2008. 4. EPA: Our nation's air: {S}tatus and trends through 2008, Tech. Rep. EPA-454/R-09-002, US Environmental Protection Agency, Office of air quality planning and standards, Research Triangle Park, North Carolina, USA, 2010. 5. Fiore, A. M., Dentener, F. J., Wild, O., Cuvelier, C., Schultz, M. G., Hess, P., Textor, C., Schulz, M., Doherty, R. M., Horowitz, L. W., MacKenzie, I. A., Sanderson, M. G., Shindell, D. T., Stevenson, D. S., Szopa, S., Van Dingenen, R., Zeng, G., Atherton, C., Bergmann, D., Bey, I., Carmichael, G., Collins, W. J., Duncan, B. N., Faluvegi, G., Folberth, G., Gauss, M., Gong, S., Hauglustaine, D., Holloway, T., Isaksen, I. S. A., Jacob, D. J., Jonson, J. E., Kaminski, J. W., Keating, T. J., Lupu, A., Marmer, E., Montanaro, V., Park, R. J., Pitari, G., Pringle, K. J., Pyle, J. A., Schroeder, S., Vivanco, M. G., Wind, P., Wojcik, G., Wu, S., and Zuber, A.: Multimodel estimates of intercontinental source-receptor relationships for ozone pollution, J. Geophys. Res., 114, D04301, https://doi.org/10.1029/2008JD010816, 2009.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|