Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996–2005

Author:

Wilson R. C.,Fleming Z. L.,Monks P. S.,Clain G.,Henne S.,Konovalov I. B.,Szopa S.,Menut L.

Abstract

Abstract. National and European legislation over the past 20 yr, and the modernisation or removal of industrial sources, have significantly reduced European ozone precursor emissions. This study quantifies observed and modelled European ozone annual and seasonal linear trends from 158 harmonised rural background monitoring stations over a constant time period of a decade (1996–2005). Mean ozone concentrations are investigated, in addition to the ozone 5th percentiles as a measure of the baseline or background conditions, and the 95th percentiles that are representative of the peak concentration levels. This study aims to characterise and quantify surface European ozone concentrations and trends and assess the impact of the changing anthropogenic emission tracers on the observed and modelled trends. Significant (p<0.1) positive annual trends in ozone mean, 5th and 95th percentiles are observed at 54 %, 52 % and 45 % of sites respectively (85 sites, 82 sites and 71 sites). Spatially, sites in central and north-western Europe tend to display positive annual ozone trends in mean, 5th and 95th percentiles. Significant negative annual trends in ozone mean 5th and 95th percentiles are observed at 11 %, 12 % and 12 % of sites respectively (18 sites, 19 sites and 19 sites) which tend to be located in the eastern and south-western extremities of Europe. European-averaged annual trends have been calculated from the 158 sites in this study. Overall there is a net positive annual trend in observed ozone mean (0.16±0.02 ppbv yr−1 (2σ error)), 5th (0.13±0.02 ppbv yr−1) and 95th (0.16±0.03 ppbv yr−1) percentiles, representative of positive trends in mean, baseline and peak ozone. Assessing the sensitivity of the derived overall trends to the constituent years shows that the European heatwave year of 2003 has significant positive influence and 1998 the converse effect; demonstrating the masking effect of inter-annual variability on decadal based ozone trends. The European scale 3-D CTM CHIMERE was used to simulate hourly O3 concentrations for the period 1996–2005. Comparisons between the 158 observed ozone trends to those equivalent sites extracted from regional simulations by CHIMERE better match the observed increasing annual ozone (predominantly in central and north-western Europe) for 5th percentiles, than for mean or 95th ozone percentiles. The European-averaged annual ozone trend in CHIMERE 5th percentiles (0.13±0.01 ppbv yr−1) matches the corresponding observed trend extremely well, but displays a negative trend for the 95th percentile (−0.03±0.02 ppbv yr−1) where a positive ozone trend is observed. Inspection of the EU-averaged monthly means of ozone shows that the CHIMERE model is overestimating the summer month O3 levels. In comparison to trends in EMEP emissions inventories, with the exception of Austria-Hungary, we do not find that anthropogenic NOx and VOC reductions have a substantial effect on observed annual mean O3 trends in the rest of Europe. On a ten year time-scale presented in this study, O3 trends related to anthropogenic NOx and VOC reductions are being masked as a result of a number of factors including meteorological variability, changes in background ozone and shifts in source patterns.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3