The joint influence of break and noise variance on the break detection capability in time series homogenization

Author:

Lindau Ralf,Venema Victor Karel ChristiaanORCID

Abstract

Abstract. Instrumental climate records of the last centuries suffer from multiple breaks due to relocations and changes in measurement techniques. These breaks are detected by relative homogenization algorithms using the difference time series between a candidate and a reference. Modern multiple changepoint methods use a decomposition approach where the segmentation explaining most variance defines the breakpoints, while a stop criterion restricts the number of breaks. In this study a pairwise multiple breakpoint algorithm consisting of these two components is tested with simulated data for a range of signal-to-noise ratios (SNRs) found in monthly temperature station datasets. The results for low SNRs obtained by this algorithm do not differ much from random segmentations; simply increasing the stop criterion to reduce the number of breaks is shown to not be helpful. This can be understood by considering that, in case of multiple breakpoints, even a random segmentation can explain about half of the break variance. We derive analytical equations for the explained noise and break variance for random and optimal segmentations. From these we conclude that reliable break detection at low but realistic SNRs needs a new approach. The problem is relevant because the uncertainty of the trends of individual stations is shown to be climatologically significant also for these small SNRs. An important side result is a new method to determine the break variance and the number of breaks in a difference time series by studying the explained variance for random break positions. We further discuss the changes from monthly to annual scale which increase the SNR by more than a factor of 3.

Publisher

Copernicus GmbH

Subject

Applied Mathematics,Atmospheric Science,Statistics and Probability,Oceanography

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3